III.2 Van Kampen theorem

정리 1 (Van-Kampen theorem)

Suppose $X = U \cup V$ with $x_0 \in U \cap V$ where U, V and $U \cap V$ are open and path-connected. Then $\pi_1(X, x_0) \cong \pi_1(U, x_0) * \pi_1(V, x_0)$ where the homomorphism $\pi_1(U \cap V, x_0)$

for an amalgamated product are induced by inclusions.

증명

 $\pi_1(U, x_0) * \pi_1(V, x_0) \cong \pi_1(X, x_0)$ 임을 보여야 한다. $\pi_1(U \cap V, x_0)$

 $\exists ! h : \pi_1(U, x_0) * \pi_1(V, x_0) \to \pi_1(X, x_0), \text{ a homomorphism by universal prop.}$

Show h is (i) onto and (ii) one to one:

(i) h is onto : use 2(b), i.e., show $h_1\pi_1(U)$ and $h_2\pi_1(V)$ generate $\pi_1(X)$:

 $\forall \alpha \in \pi_1(X)$, use Lebesgue lemma to obtain $\alpha = \alpha_1 * \cdots * \alpha_p$, s.t. $\alpha_i := \alpha|_{[t_{i-1},t_i]} \subset U$ or V.

Choose a path ρ_i from x_0 to $\alpha_i(t_i)$ lying completely in U or V and let $\rho_p = \rho_0 = \text{constant path } x_0$.

Let $\widetilde{\alpha}_i = \rho_{i-1} * \alpha_i * \overline{\rho_i}$.

Then $[\alpha] = [\alpha_1 * \cdots * \alpha_p] = [\widetilde{\alpha_1} * \cdots * \widetilde{\alpha_p}] = [\widetilde{\alpha_1}] \cdots [\widetilde{\alpha_p}]$ and each $[\widetilde{\alpha_i}] \in h_1\pi_1(U)$ or $h_2\pi_1(V)$.

(ii) h is one-to-one i.e. show ker h = 0:

Suppose $h([\alpha_1] \cdots [\alpha_p]) = 1$, where $[\alpha_i]$ in either $\pi_1(U)$ or $\pi_1(V)$ and show $[\alpha_1] \cdots [\alpha_p] = 0$ in $\pi_1(U) * \pi_1(V)$.

 $\alpha_1 * \cdots * \alpha_p \sim 1$ in X by hypothesis

 $\Rightarrow \exists F: I \times I \to X = U \cup V \text{ with } F_0 = \alpha_1 * \cdots * \alpha_p \text{ and } F_1 = x_0.$

 \xrightarrow{F} X

Using Lebesgue lemma, can partition $I \times I$ fine enough so that

- (1) $F(\text{each }\Box) \subset U \text{ or } V \text{ and }$
- (2) partition contains end points of domain of each α_i so that

$$\alpha_1 = \alpha_{11} * \alpha_{12} * \cdots * \alpha_{1i_1},$$

$$\vdots$$

$$\alpha_p = \alpha_{p1} * \cdots * \alpha_{pi_p}.$$

Choose and fix a path $\rho_{r,s}$ from x_o to $F(t_r,t_s)$ once and for all s.t. $\rho_{r,s} \subset \{x_0\}, U \cap V, U, V$ respectively if $F(t_r,t_s) \in \{x_0\}, U \cap V, U, V$ respectively.

Let $\widetilde{\sigma_{r,s}} = \rho_{r,s} * \sigma_{r,s}, * \overline{\rho_{r+1,s}}$ and $\widetilde{\tau_{r,s}} = \rho_{r,s} * \tau_{r,s} * \overline{\rho_{r,s+1}}$, where $\sigma_{r,s}$ and $\tau_{r,s}$ are short paths given by the following picture.

Claim: $\widetilde{\sigma_{r,s}} * \widetilde{\tau_{r+1,s}} \sim \widetilde{\tau_{r,s}} * \widetilde{\sigma_{r,s+1}}$ in U or V. (Proof is clear as in the following picture.)

