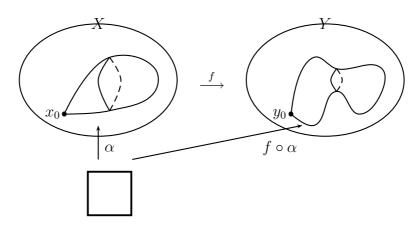
IV.2 Functorial property and Homotopy invariance

(1) Functorial property of π_n

$$f: (X, x_0) \to (Y, y_0) \Rightarrow f_* = \pi_n(f) : \pi_n(X, x_0) \to \pi_n(Y, y_0)$$

$$[\alpha] \mapsto [f \circ \alpha]$$



- 1. f_* is a homomorphism : $f \circ (\alpha * \beta) = (f \circ \alpha) * (f \circ \beta)$
- 2. $id_* = id : clear$

$$(g \circ f)_* = g_* \circ f_* : (X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$$

$$\Rightarrow \pi_n(X, x_0) \xrightarrow{f_*} \pi_n(Y, y_0) \xrightarrow{g_*} \pi_n(Z, z_0)$$

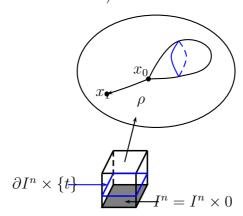
$$[\alpha] \mapsto [f \circ \alpha] \mapsto [g \circ f \circ \alpha]$$

3.
$$f, g: (X, x_0) \to (Y, y_0)$$
 and $f \underset{H}{\simeq} g(\text{rel } x_0)$
 $\Rightarrow f_* = g_* : \text{The proof is the same as in } \pi_1 \text{-case, i.e.,}$
 $f \circ \alpha = H_0 \circ \alpha \simeq H_1 \circ \alpha = g \circ \alpha$

Change of Base point

Let $x_0, x_1 \in X$ and ρ be a path from x_0 to x_1 .

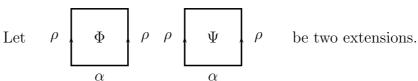
Given $\alpha: (I^n, \partial I^n) \to (X, x_0)$, define $\Phi: I^n \times I \to X$ as an extension of a map $\phi: J = I^n \times 0 \cup \partial I^n \times I \to X$ defined by $\phi|_{I^n \times 0} = \alpha$ and $\phi|_{\partial I^n \times \{t\}} = \rho(t)$. (Note that J is a strong deformation retract of I^{n+1} and hence any map defined on J has an extension on I^{n+1} .)



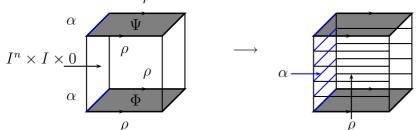
Define
$$\phi_{\rho}: \pi_n(X, x_0) \to \pi_n(X, x_1)$$

 $[\alpha] \mapsto [\Phi|_{I^n \times \{1\}}]$

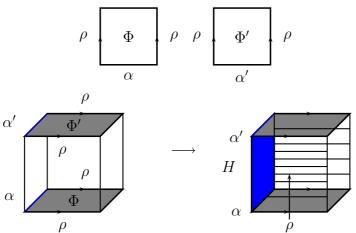
1. independent of choice of Φ :



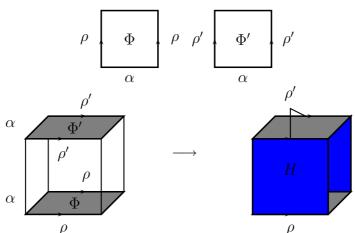
Define a homotopy H between Φ and Ψ as an extension of a map : $I^n \times I \times 0 \cup \partial (I^n \times I) \times I \to X$ given by the following pictures.



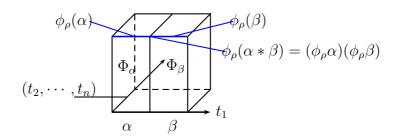
Then $H|_{I^n \times I \times \{1\}}$ gives a homotopy between $\Phi|_{I^n \times 1}$ and $\Psi|_{I^n \times 1}$. $\therefore \Phi|_{I^n \times 1} \sim \Psi|_{I^n \times 1}$ 2. ϕ_{ρ} is well-defined i.e., $\alpha \underset{H}{\sim} \alpha' \Rightarrow \Phi|_{I^n \times 1} \sim \Phi'|_{I^n \times 1}$



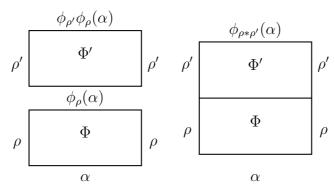
3. ϕ_{ρ} depends only on the homopoty class of $\rho(\text{rel }\partial)$ i.e., $\rho \sim_{H} \rho' \Rightarrow \phi_{\rho} = \phi_{\rho'}$, so that we can write as $\phi_{[\rho]}$.



4. $\phi_{[\rho]}$ is a homomorphism i.e., $\phi_{[\rho]}[\alpha * \beta] = \phi_{[\rho]}[\alpha]\phi_{[\rho]}[\beta]$.



5. $\phi_{\rho*\rho'} = \phi_{\rho'} \cdot \phi_{\rho}$ where $\rho(1) = \rho'(0)$:



6. ϕ_{ρ} is an isomorphism and $\phi_{\overline{\rho}} = \phi_{\rho}^{-1}$:

$$\phi_{\rho} \cdot \phi_{\overline{\rho}} \stackrel{5}{=} \phi_{\overline{\rho}*\rho} \stackrel{3}{=} \phi_{x_1} = \mathrm{id}_{\pi_n(X,x_1)} \text{ and similarly } \phi_{\overline{\rho}} \cdot \phi_{\rho} = \mathrm{id}_{\pi_n(X,x_0)}$$

Remark. If ρ is a loop, then $\phi_{\rho}: \pi_n(X, x_0) \to \pi_n(X, x_0)$. Hence, we have a right action of $\pi_1(X, x_0)$ on $\pi_n(X, x_0)$.

숙제 12. (1) X is n-simple.

 $\stackrel{\text{def}}{\Leftrightarrow} \exists x_0 \in X \text{ s.t. } \pi_1(X, x_0) \text{ action on } \pi_n(X, x_0) \text{ is trivial.}$ $\Leftrightarrow \forall x \in X, \pi_1(X, x) \text{ action on } \pi_n(X, x) \text{ is trivial.}$

(2) X is 1-simple. $\Leftrightarrow \pi_1(X)$ is abelian.

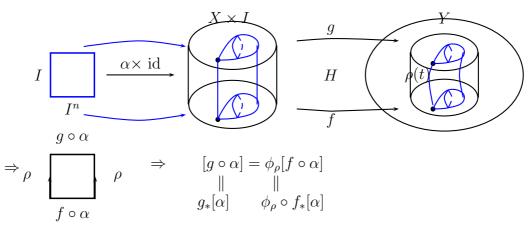
Homotopy invariance

1.
$$f \stackrel{H}{\simeq} g: X \to Y \quad \Rightarrow \quad \pi_n(X, x) \stackrel{g_*}{\longrightarrow} \pi_n(Y, g(x))$$

$$f_* \searrow \curvearrowright \nearrow \phi_\rho :\cong \quad \text{where } \rho(t) = H(x, t)$$

$$\pi_n(Y, f(x))$$

증명



2. $f: X \to Y$ is a homotopy equivalence. $\Rightarrow f_*: \pi_n(X, x) \to \pi_n(Y, y)$ is an isomorphism.

증명 exactly same as π_1 -case:

$$g\circ f\simeq \operatorname{id}_X \text{ and } f\circ g\simeq \operatorname{id}_Y$$

$$g_*\circ f_*=(g\circ f)_*=\phi_\rho\circ id_*:\cong\Rightarrow g_* \text{ is onto.}$$
 마찬가지로 $f_*\circ g_*:\cong\Rightarrow g_* \text{ is } 1\text{-}1.$
$$\therefore f_* \text{ is }\cong.$$
 (두번째 줄의 f_* 와 세번째 줄의 f_* 는 다르다.)