V.1 Simplicial complex in \mathbb{R}^N

정의 1 $\{a_0, \dots, a_n\} \subset \mathbb{R}^N$ is geometrically independent (or affinely independent) if $a_1 - a_0, \dots, a_n - a_0$ are linearly independent.

Note. geometrically independent $\Leftrightarrow \sum_{i=0}^{n} t_i a_i = 0$ with $\sum_{i=0}^{n} t_i = 0 \Rightarrow t_0 = \cdots = t_n = 0$.

Affine independence is a notion in affine space, i.e., invariant under affine transformations.

정의 2 (n-simplex)

 $\{a_0,\cdots a_n\}\subset \mathbb{R}^N$ 가 geometrically independent하다고 하자. 이 때,

$$\sigma = \langle a_0, \dots, a_n \rangle = \{ x \in \mathbb{R}^n | x = \sum_{i=0}^n t_i a_i , t_i \ge 0 \text{ and } \sum_{i=0}^n t_i = 1 \}$$

= $convex \ hull \ of \{a_0, \cdot \cdot \cdot a_n\}$

=n-simplex spanned by $\{a_0,\cdots,a_n\}$ 라 정의한다.

Remark

- (1) $t_i = t_i(x)$ for $x \in \sigma$ is uniquely determined and called a *barycentric coordinate* of x, and t_i is a continuous function of $x \in \sigma$.
- (2) a_i =vertex of σ , n=dim σ ੂੰ ਘੀ a simplex spanned by a subset of $\{a_0, \dots a_n\}$ is called a *face* of σ .

 $\overset{\circ}{\sigma} := int(\sigma) = \{ x \in \sigma \mid t_i(x) > 0, t_i = 0, \dots, n \}.$

 $\partial \sigma$:=boundary of $\sigma = \sigma - \overset{\circ}{\sigma} = \{x \in \sigma \mid t_i(x) = 0, \text{ for some } i\}$

(3) $\forall x \in \sigma, \exists ! \text{ face } \tau \text{ of } \sigma(\text{denoted by } \tau < \sigma) \text{ such that } x \in \mathring{\tau}.\text{Indeed},$

$$\tau = \langle a_{i_0}, \dots, a_{i_k} | t_{i_j}(x) \rangle 0, \quad j = 0, \dots, k \rangle.$$
 Therefore $\sigma = \coprod_{\tau < \sigma} \mathring{\tau}$

정의 3 (Simplicial complex)

A simplicial complex K in \mathbb{R}^N is a collection of simplices in \mathbb{R}^N such that

- $(1)\tau < \sigma, \ \sigma \in K \Rightarrow \tau \in K$, and
- $(2)\sigma, \tau \in K \Rightarrow \sigma \cap \tau < \sigma \text{ and } \sigma \cap \tau < \tau.$

정의 4 (Subcomplex, Dimension, p-skeleton)

- (1) $L \subset K$ is a subcomplex (denoted by L < K) if L is a simplicial complex in its own right.
- (2) $dimK := max\{dim \, \sigma | \sigma \in K\}.$

(3) p-skeleton of $K:=K^p$ =the subcomplex consisting of all simplices of K of dim $\leq p$.

주어진 simplicial complex K에 대해 $|K| = \bigcup_{\sigma \in K} \sigma \subset \mathbb{R}^N$ 를 생각해보자. |K|에

topology를 다음과 같이 준다.

Topology of |K|:

(1) each of σ has the usual induced subspace topology in \mathbb{R}^N .

 $(2)A \subset |K|$ is closed (open, respectively) if $A \cap \sigma$ is closed(open, respectively) in $\sigma, \forall \sigma \in K$.

|K|의 closed set을 (2)와 같이 정의하면 이는 |K|에 topology 구조를 주고 이를 weak (or coherent) topology 라고 부른다. 또한 |K| with a weak topology 를 K의 underlying space(or a polytope) 라고 한다.

숙제 14. 일반적으로 어떤 집합 X에서 $S_{\alpha} \subset X, \forall \alpha$ 이고 각 S_{α} 는 topological spaces일 때, 다음 조건을 만족한다고 하자.

 $1.S_{\alpha} \cap S_{\beta}$ is open(closed, respectively) in S_{α} and S_{β} , $\forall \alpha, \beta$

2.topology on $S_{\alpha} \cap S_{\beta}$ induced from $S_{\alpha} =$ topology on $S_{\alpha} \cap S_{\beta}$ induced from S_{β} 이 때 $X = \bigcup S_{\alpha}$ 에 다음과 같이 topology를 정의할 수 있다.

 $A \subset X$ is open(closed, respectively) if $A \cap S_{\alpha}$ is open(closed, respectively) in each S_{α} .

그러면 이런 A들은 X상에 topology를 잘 정의하게 되고 다음을 만족한다. the subspace topology of S_{α} as a subset of X=the original topology of S_{α} .

이 topology를 $\{S_{\alpha}\}$ 에 의해 induced된 weak or coherent topology라고 부른다. 그리고 X가 polytope 과 homeomorphic 할 때 X를 polyhedron이라고 한다.

Note. The weak topology of |K| is finer than the subspace topology of $|K| \subset \mathbb{R}^N$, i.e., $id: |K|_w \to |K|_s$ is continuous.

(증명) $A \subset |K|$ 가 closed in $|K|_s$ 이면 A는 subspace topology 로 closed이고 $A \cap \sigma$ 는 σ 에서 closed이다. 따라서 A는 weak topology로 closed이다.

Examples.

 $1 \cdot [0, 1]$

(0,1]은 subspace topology로 보면 K에서 open이지만, weak topology로 보면 이는 closed이다. 왜냐하면 K의 각 simplex들과 (0,1]과의 교집합은 \emptyset 혹은 simplex 자신으로 나오므로 이는 closed이다.

 σ 에 대해 $\overset{\circ}{\sigma}$ 는 $|K|_w$ 에서 open 이다. 왜냐하면 $\overset{\circ}{\sigma}$ 와, σ 를 제외한 나머지 τ 와의 교집합은 모두 \emptyset 이고 이는 τ 에서 open이다. 또한 σ 와의 교집합은 $\overset{\circ}{\sigma}$ 인데 이역시 σ 에서 open이므로 $\overset{\circ}{\sigma}$ 는 $|K|_w$ 에서 open 이다.

하지만 $\overset{\circ}{\sigma}$ 는 $|K|_s$ 에서 open 이 아니다. subspace topology 로 봤을 때, $\overset{\circ}{\sigma}$ 상의 한 점에서 어떤 근방을 잡아도 다른 simplex $\tau \in K$ 와 만나므로 interior point가 될 수 없다. 따라서 $\overset{\circ}{\sigma}$ 는 open일 수가 없다.

3 . If K is a finite simplicial complex in \mathbb{R}^N , then

weak topology of |K|=subspace topology of |K|.

중명(\supseteq)는 이미 앞에서 보였고, (\subseteq)를 보이면 된다. F를 $|K|_w$ 에서 closed인 subset 이라고 하자. 그러면 모든 σ 에 대해 $F\cap \sigma$ 는 σ 에서 closed이고, σ 는

 \mathbb{R}^N 에서 closed 이므로 $F\cap\sigma$ 는 \mathbb{R}^N 에서 closed이다. 그러면, $F=\bigcup_{\sigma}(F\cap\sigma)$ 이므로 closed subset의 finite union은 역시 closed하다는 성질에 따라 F는 \mathbb{R}^N 에서 closed이다.

Simplicial complex in \mathbb{R}^J

Let J be an arbitrary index set and $\mathbb{R}^J = \{f : J \to \mathbb{R}\}$. Write f as $(x_{\alpha})_{\alpha \in J}$, i.e., $f(\alpha) = x_{\alpha}$.

 \mathbb{R}^J is a vector space with the usual addition and scalar multiplication. $\mathbb{E}^J := \{x = (x_\alpha)_{\alpha \in J} \in \mathbb{R}^J | x_\alpha = 0 \text{ for all but finitely many } \alpha$'s $\}$

Topology of \mathbb{E}^J :

Define a metric on \mathbb{E}^J by $|x-y| = max\{|x_\alpha - y_\alpha| | \alpha \in J\}$. Then \mathbb{E}^J with this topology is called a generalized Euclidean space.

Note $span\{e_{\alpha_1}, \dots, e_{\alpha_N}\} \cong \mathbb{R}^N$ (as a topological vector space) and a simplex $\sigma = \langle a_0, \dots, a_n \rangle$ in \mathbb{E}^J can be viewed as a simplex in \mathbb{R}^N .

All the previous definitions go through for a simplicial complex in \mathbb{E}^J . $\mathbb{R}^{\infty} := \mathbb{E}^N$.