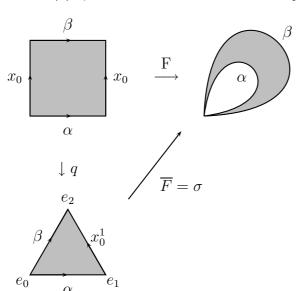
VII.5 Relation between π_1 and H_1

정리 1 There exists a natural homomorphism $\chi : \pi_1(X, x_0) \to H_1(X)$

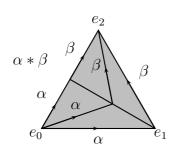
and if X is path connected, χ is onto and $ker\chi = [\pi_1, \pi_1]$ a commutator subgroup of π_1 (i.e., $H_1 = \pi_1/[\pi_1, \pi_1]$ is an abelianization of π_1 .)

증명 (1) χ is well-defined i.e., $\alpha \stackrel{F}{\simeq} \beta \Rightarrow \{\alpha\} = \{\beta\} (\alpha \sim \beta)$.



 σ 를 그림과 같이 정의하면 $\partial \sigma = x_0^1 - \beta + \alpha$ and $\partial x_0^2 = x_0^1 - x_0^1 + x_0^1 = x_0^1$ where $x_0^p : \Delta^p \to \{x_0\}$ is constant map. 따라서, $\alpha \sim \beta$.

(2) χ is a homomorphism i.e., $[\alpha * \beta] \mapsto {\{\alpha\}} + {\{\beta\}}$



 σ 를 그림과 같이 정의하면 $\partial \sigma = \beta - \alpha * \beta + \alpha$ 이 므로, $\alpha * \beta \sim \alpha + \beta$.

X가 path connected라 가정하면,

(3) χ is onto:

Given $z \in Z_1(X)$, $z = \sum n_i \alpha_i$, $\partial z = \sum n_i (\alpha_i(1) - \alpha_i(0)) = 0$. Fix paths η_i^0 and η_i^1 from x_0 to $\alpha_i(0)$ and $\alpha_i(1)$ for each i such that $\alpha_i(0) = 0$. $\alpha_j(1) \Rightarrow \eta_i^0 = \eta_j^1$.

Let $\gamma_i = \eta_i^0 * \alpha_i * \overline{\eta_i^1}$. Then

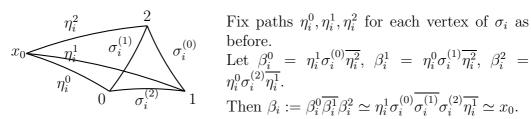
$$\chi(\Pi[\gamma_i]^{n_i}) = \{\Sigma n_i \gamma_i\} = \{\Sigma n_i (\eta_i^0 + \alpha_i - \eta_i^1)\} = \{\Sigma n_i \alpha_i\} = \{z\}$$

(4) $ker \chi = [\pi_1, \pi_1].$

 $ker\chi \supset [\pi_1, \pi_1]$: clear since H_1 is abelian.

 $ker\chi \subset [\pi_1, \pi_1]$:

Suppose $\chi[\gamma] = {\gamma} = 0$, i.e., $\gamma = \partial c$, $c = \sum_i n_i \sigma_i \in S_2(X)$. Then, $\gamma = \partial c = \sum_i n_i \partial \sigma_i = \sum_i n_i (\sigma_i^{(0)} - \sigma_i^{(1)} + \sigma_i^{(2)})$.



Now compare γ and $\prod_i \beta_i^{n_i}$. Note that $[\gamma] = [\gamma][\beta_i^{n_i}]^{-1} = [\gamma * \overline{\beta_i^{n_i}}] \in [\pi_1, \pi_1]$ by the following claim.

<u>Claim</u> Let $\delta = \prod \alpha_i^{\epsilon_i}$ (α_i : paths and $\epsilon_i = \pm 1$) be a loop.

$$exp(\alpha_i) = 0 \Rightarrow [\delta] \in [\pi_1, \pi_1] \ (exp(\alpha_i) \vdash \alpha_i$$
의 지수 합)

proof of Claim

Define η_i^0, η_i^1 as before. Then,

$$\delta = \Pi \alpha_i^{\epsilon_i} \simeq \Pi (\eta_i^0 * \alpha_i * \overline{\eta_i^1})^{\epsilon_i}$$

Let $\overline{\delta}$ be the coset of $[\delta]$ in $\pi_1/[\pi_1,\pi_1]$. Then writing $\beta_i=\eta_i^0*\alpha_i*\overline{\eta_i^1}$ we have

$$\overline{\delta} = \sum_{i} \epsilon_{i} \overline{\beta_{i}} = \sum_{\beta_{i}} exp(\alpha_{i}) \overline{\beta_{i}} = 0$$

where the last summation is over distinct β_i 's (i.e., over α_i 's).

Therefore, $[\delta] \in [\pi_1, \pi_1]$

숙제 23. Compare $\pi_1(\Sigma_g)$ and $H_1(\Sigma_g)$ using the earlier computations of these.