VIII.2 Further Application to Sphere

정의 1
$$f:S^n \to S^n \Rightarrow f_*:\widetilde{H_*}(S^n) \to \widetilde{H_*}(S^n).$$

Now let α be a generator of $H_*(S^n) \cong \mathbb{Z}$ and let $f_*(\alpha) = d\alpha$.

Then the integer d is independent of choice of a generator α , and is called the degree of f.

Remark. M^n : connected orientable closed n-manifold \Rightarrow degree is defined.

정리 1 (Basic properties of degree)

- (i) $f \simeq g \Rightarrow deg f = deg g$
- (ii) $deg (f \circ g) \Rightarrow (deg f)(deg g)$
- (iii) deg (id) = 1
- (iv) deg(c) = 0, where c is a constant map.

증명 (i) ~ (iii) : clear

(iv)
$$c$$
: constant map $\Rightarrow c_* = 0 : \widetilde{H}(X) \to \widetilde{H}(X)$
 $(c: X \xrightarrow{\bar{c}} x_0 \xrightarrow{i} X \Rightarrow c_* : \widetilde{H}(X) \xrightarrow{\bar{c}_*} \widetilde{H}(x_0) = 0 \xrightarrow{i_*} \widetilde{H}(X))$

Note. (1)
$$\alpha_n : S^1 \to S^1 \Rightarrow \deg(\alpha_n) = n$$

 $z \to z^n$

증명

$$\pi_1(S^1) \xrightarrow{(\alpha_n)_{\sharp}} \pi_1(S^1)$$

$$\downarrow_{\chi:\cong} \qquad \qquad \downarrow_{\chi:\cong} \qquad \qquad \downarrow_{\chi:\cong}$$

$$H_1(S^1) \xrightarrow{(\alpha_n)_{*}} H_1(S^1)$$

$$\Rightarrow (\alpha_n)_*\{\alpha_1\} = \chi((\alpha_n)_{\sharp}[\alpha_1]) = \chi([\alpha_n \circ \alpha_1]) = \chi([\alpha_n])$$
$$= \chi(n[\alpha_1]) = n\chi[\alpha_1] = n\{\alpha_1\}$$

- (2) Brower fixed point theorem on B^n : Prove as follows.
- (i) $S^n \xrightarrow{f} S^n \Rightarrow \deg f = 0$: Applying homology functor to the diagram $0 \leftrightarrow f$ and note that $\widetilde{H}(B^n) = 0$
- (ii) \nexists retraction $r: B^{n+1} \to S^n$:

 $id: S^n \xrightarrow{i} B^{n+1} \xrightarrow{r} S^n \xrightarrow{(i)} \deg(id) = 0$, a contradiction.

(iii) $\forall \phi: B^n \to B^n$ has a fixed point: The proof is the same as before for the case of B^2 . (If ϕ has no fixed point, we can construct a retraction: $B^n \to S^{n-1}$.)

정리 2 Let $S^n \hookrightarrow \mathbb{R}^{n+1}$ be the standard sphere and $f \in O(n+1,\mathbb{R})$ so that $f: S^n \to S^n$. Then $\deg f = \det f(=\pm 1)$

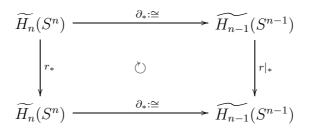
증명

보조정리 3 Let $r: S^n \to S^n$ be the reflection given by $r(x_1, x_2, \dots, x_{n+1}) = (-x_1, x_2, \dots, x_{n+1})$. Then deg $r = -1 = \det r$.

증명 induction on n.

Let $S^0 = \{-1, 1\}$, and x and y be a 0-singular simplex which has image -1 and 1 respectively. $\widetilde{H}_0(S^0) = \{x - y\}$ and $r_* : x - y \mapsto y - x$. \therefore deg r = -1.

n > 0: MV sequence \Rightarrow



 $\Rightarrow \deg r_* = \deg r|_*$

보조정리 4 $f \in SO(n+1) \Rightarrow f \simeq id$.

증명 Essentially this is to show SO(n+1) is path-connected.

Fact. $A \in SO(n) \Rightarrow \exists B \text{ s.t.}$

$$BAB^{-1} = \begin{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} & \dots \\ \vdots & \ddots & \ddots \\ & & 1 \end{pmatrix} \stackrel{let}{=} D_{\theta}$$

where $\theta = (\theta_1, \cdots, \theta_i)^1$ Using fact, $H_t = B^{-1}D_{t\theta}B : I \simeq A \quad (t = 0 \text{ 2 m } I, t = 1 \text{ 2 m } A)$

정리 2 증명 계속

Now note that $O(n+1) = SO(n+1) \cup rSO(n+1) \stackrel{det}{\rightarrow} \{-1,1\} = \mathbb{Z}/2.$ (보조정 리 3, 4로부터)

 $\therefore \deg = \det$

따름정리 5 $a: S^n \to S^n$ the antipodal map \Rightarrow deg $a = (-1)^{n+1}$.

정리 6 $f, g: S^n \to S^n$ with $f(x) \neq g(x)$ $\forall x \in S^n \Rightarrow f \simeq ag$. (or equivalently, f and q are never antipodal \Rightarrow f \simeq q)

증명 $f(x) \neq g(x)$ $\forall x \Rightarrow f(x)$ and ag(x) are not antipodal. $\Rightarrow (1-t)f(x) + tag(x) \neq 0$ $F: S^n \times I \Rightarrow S^n$ given by $F(x,t) = \frac{(1-t)f(x)+tag(x)}{|(1-t)f(x)+tag(x)|}$ is the desired homotopy. \square

따름정리 7 (1) f has no fixed point. $\Rightarrow f \simeq a$ (2) deg $f \neq (-1)^{n+1} \Rightarrow f$ has a fixed point.

증명
$$(1)$$
 $f(x) \neq id(x) \stackrel{6}{\Rightarrow} f \simeq a$

 $\begin{array}{l} A\in O(n)\Rightarrow A \text{ is an isometry tor (,)} \\ \text{Let } Ax=\lambda x\Rightarrow \lambda\bar{\lambda}(x,x)=(Ax,Ax)=(x,x)\Rightarrow |\lambda|=1 \\ A: \text{real}\Rightarrow e^{i\theta}, e^{-i\theta}: \text{conjugate eigenvlaues in general} \Rightarrow Az=(\cos\theta+i\sin\theta)z\Rightarrow x=\frac{z+\bar{z}}{2} \\ A\bar{z}=(\cos\theta-i\sin\theta)\bar{z} \qquad y=\frac{z-\bar{z}}{2}i \end{array}$

Then A can be written as $\begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}$ with repect to a basis $\{x,y\}$ where $x=\frac{z+\bar{z}}{2}$ as

 $^{^1&}lt;,>:$ standard inner product on $\mathbb{R}^n\leadsto (\ ,\):$ standard Hermitian inner product on \mathbb{C}^n

exc. Is the converse of (1) true?

숙제 1. 문제 16.11.

정리 8 S^n has a non-vanishing vector field iff n = odd.

증명 (
$$\Leftarrow$$
) $n=2m+1 \Rightarrow \text{let } v(x_0,\cdots,x_{2m+1})=(-x_1,x_0,-x_3,x_2,\cdots,-x_{2m+1},x_{2m})$

$$(\Rightarrow)$$
 Suppose \exists a non-vanishing vector field v , we may assume $|v(x)|=1$

$$\Rightarrow F(x,t) = (\cos t\pi)x + (\sin t\pi)v(x)$$
 gives a homotopy : $id \simeq a$

$$\Rightarrow$$
 deg (id) = deg (a) = $(-1)^{n+1}$

$$\Rightarrow n = \text{odd}.$$

Remark. vector field problem for S^{odd} :

Adams solution: Let $n+1=(odd)2^{4a+b}, \quad 0\leqslant b\leqslant 3$. Then the number of independent vector fields on $S^n=2^b+8a-1$.

숙제 2. 문제 16.10.