Homotopy invariance(preliminary version)

정리 1 $f, g: (X, x_0) \rightarrow (Y, y_0)$ and $f \simeq g$ relative to x_0 . $\Rightarrow f_{\sharp} = g_{\sharp} : \pi_1(X, x_0) \rightarrow \pi_1(Y, y_0)$.

증명 F(t,s)를 f 와 g 사이의 homotopy 라 하면, $G(t,s)=F(\alpha(t),s)$ 는 $f\circ\alpha$ 와

 $g \circ \alpha$ 사이의 homotopy를 준다. 따라서 $f_{t}([\alpha]) = [f \circ \alpha] = [g \circ \alpha] = g_{t}([\alpha]).$

따름정리 2 $f:(X,x_0) \to (Y,y_0), g:(Y,y_0) \to (X,x_0)$ and $g \circ f \simeq 1_X$ relative to x_0 , $f \circ g \simeq 1_Y$ relative to y_0 . $\Rightarrow f_{\sharp} = (g_{\sharp})^{-1}: \pi_1(X,x_0) \to \pi_1(Y,y_0)$ is an isomorphism.

증명 $g \circ f \simeq 1_X$ relative to x_0 이므로 $g_\sharp \circ f_\sharp = (g \circ f)_\sharp = (id_X)_\sharp = id$ 이다.

같은 방법으로 $f_{\sharp} \circ g_{\sharp} = (f \circ g)_{\sharp} = (id_Y)_{\sharp} = id$ 이다.

정의 1 X is homotopy equivalent to Y (or X has the same homotopy type as Y), denoted by $X \simeq Y$,

if $\exists f: X \to Y \text{ and } g: Y \to X \text{ such that } f \circ g \simeq 1_Y \text{ and } g \circ f \simeq 1_X.$ In this case f is called a homotopy equivalence.

Example. $\mathbf{R}^2 \setminus \{0\} \simeq S^1$.

 $\mathbf{R}^2\setminus\{0\}$ 를 $X,\,S^1$ 를 Y라고 하자. $f(x)=rac{x}{|x|}\;,g=inclusion$ 으로 주면 $f\circ g=1_Y$ 인 것은 자명하다.

또한 $F(x,t)=(1-t)x+trac{x}{|x|}$ 이라고 두면

$$F(x,0) = x$$
 $F(x,1) = \frac{x}{|x|} = f(x)$

따라서 $g\circ f\simeq id_X$ 이고 X는 Y와 same homotopy type을 갖는다.

숙제 1.

- 1. $\mathbf{R}^n \setminus \{0\} \simeq S^{n-1}$.
- 2. \simeq is an equivalence relation.
- 3. Möbius band 와 annulus는 homotopy type 이 같은가?
- 4. $T^2 \setminus \{point\} \simeq \text{figure eight.}$