I. Adjunction Space (Attaching space)

I.1 Construction

정의 1 X,Y: disjoint topological spaces , $A \overset{closed}{\subset} X$ and $f:A \to Y$, a map. Define an equivalence relation \sim on $X \coprod Y$ generated by $a \sim f(a), \quad \forall a \in A$. The quotient space $X \cup_f Y = X \coprod Y / \sim$ is called the adjunction space determined by f and f is called an attaching map.

정리 1 (Extension principle)

Let $q: X \to Z$ and $h: Y \to Z$ s.t. $q(a) = h f(a), \forall a \in A \Rightarrow$

 $\exists ! k \ s.t. \ the \ diagram \ commute$

정리 2 Let $X \coprod Y \xrightarrow{p} X \cup_{f} Y$ be the quotient map.

(1) Y is embedded as a closed subset of $X \cup_f Y$:

 $p|_Y:Y\to p(Y)$ is a homeomorphism.

(2) X-A is embedded as an open subset of $X \cup Y$:

 $p|_{X-A}: X-A \to p(X\setminus A)$ is a homeomorphism.

증명(1) $p|_Y$ is continuous and 1-1.

Show $p|_Y$ is a closed map:

 $C \subset Y$ a closed subset and show p(C) is closed in $X \cup Y$,

i.e., $p^{-1}p(C) = f^{-1}(C) \coprod C$ is closed. And the assertion clearly holds.

(2) $p|_{X-A}$ is continuous and 1-1. Show it is an open map:

 $U \subset X - A$ open $\Rightarrow U$ open in $X \Rightarrow p(U)$ is open since $p^{-1}p(U) = U$ is open is $X \coprod Y$.

정리 3 (Separation Axiom)

 $X, Y: T_1 \Rightarrow X \cup Y: T_1$ $X, Y: normal \Rightarrow X \cup Y: normal$

Ref. See Munkres p.210

정의 2 (Collared pair) (X, A) is called a collared pair if

- $(1)A \subset X$ is closed.
- (2)X is Hausdorff.
- (3) Points in X-A can be separated from $A: \forall x \in X-A, \exists U, V:$ disjoint open sets s.t. $x \in U$ and $A \subset V$.
- (4) A has a collaring B in $X : \exists$ open $B \supset A$ s.t. A is a strong deformation retract of B.

명제 4 (X,A): a collard pair, Y: Hausdorff $\Rightarrow (X \cup Y,Y)$: a collard pair.

In fact, B: a collaring of $A \Rightarrow Y \cup p(B)$: a collaring of Y.

증명 (1) : clear from 정리 2(1)

(2) $X \cup_f Y$ is Hausdorff: Case 1. $z_1, z_2 \in X \cup_f Y - Y \cong X - A \Rightarrow$ clear.

Case 2. $z_1 \in Y, z_2 \notin Y \stackrel{\text{def}(2(3))}{\Rightarrow} \exists U \ni z_2, V \supset A$

 $\Rightarrow p(U)$: open neighborhood of z_2 and $p(V) \cup Y$: open neighborhood of z_1 gives a separation. (Note $p^{-1}(p(V) \cup Y) = V \coprod Y$: open in $X \coprod Y$.)

Case 3. $z_1, z_2 \in Y$: Let $z_1 \in V_1, z_2 \in V_2$ be a separation and

 $r: B \to A$ a strong deformation retract. Let $U_i = r^{-1} f^{-1}(V_i)$: open in X.

 $\Rightarrow p(U_1) \cup p(V_1)$ and $p(U_2) \cup p(V_2)$ give a separation for z_1 and z_2 (Note $p^{-1}(p(U) \cup p(V)) = U \coprod V$.)

(3) $z \notin Y$. Then use 정의 2(3) to get disjoint open sets $U \ni z$ and $V \supset A \Rightarrow$ p(U) and $p(V) \cup Y$ give a separation for z and Y.(cf. Case2.)

(4) Let $D: id \simeq i \cdot r(\text{rel } A)$ be a strong deformation retract :

$$D: B \times I \to B \text{ s.t.} \left\{ \begin{array}{ccc} D(a,t) = a, & \forall a \in A & t \in I \\ D(b,0) = b, & \forall b \in B \\ D(b,1) = r(b) \in A, & \forall b \in B \end{array} \right\}$$

Define
$$\bar{D}: p(B) \cup Y \times I \to p(B) \cup Y$$
 by $\bar{D}(z,t) = \left\{ \begin{array}{cc} z, & z \in Y \\ p(D(b,t)), & z = p(b), & b \in B-A \end{array} \right\}$

$$(B \coprod Y) \times I \xrightarrow{D \coprod p_1} B \coprod Y$$

$$\downarrow^{p \times id} \qquad \curvearrowright \qquad \downarrow^{p}$$

$$(p(B) \cup Y) \times I \xrightarrow{\bar{D}} p(B) \cup Y$$

 $\Rightarrow \bar{D}$ is continuous by the following fact.

Fact. $p:X\to Y$ quotient , C: locally compact Hausdorff.

 $\Rightarrow p \times id : X \times C \rightarrow Y \times C$ is a quotient map.

증명 Ref. Munkres p.113