I. Adjunction Space (Attaching space)

I. 1 Construction

정의 $1 X, Y$: disjoint topological spaces,$A \stackrel{\text { closed }}{\subset} X$ and $f: A \rightarrow Y$, a map. Define an equivalence relation \sim on $X \amalg Y$ generated by $a \sim f(a), \quad \forall a \in A$. The quotient space $X \cup Y=X \amalg Y / \sim$ is called the adjunction space determined by f and f is called an attaching map.

정리 1 (Extension principle)
Let $g: X \rightarrow Z$ and $h: Y \rightarrow Z$ s.t. $g(a)=h f(a), \quad \forall a \in A \Rightarrow$

정리 2 Let $X \amalg Y \xrightarrow{p} X \cup \underset{f}{\cup} Y$ be the quotient map.
(1) Y is embedded as a closed subset of $X \cup_{f} Y$:
$p_{Y}: Y \rightarrow p(Y)$ is a homeomorphism.
(2) $X-A$ is embedded as an open subset of $X \cup_{f} Y$:
$\left.p\right|_{X-A}: X-A \rightarrow p(X \backslash A)$ is a homeomorphism.
증명(1) $\left.p\right|_{Y}$ is continuous and 1-1.
Show $\left.p\right|_{Y}$ is a closed map:
$C \subset Y$ a closed subset and show $p(C)$ is closed in $X \cup_{f} Y$,
i.e., $p^{-1} p(C)=f^{-1}(C) \coprod C$ is closed. And the assertion clearly holds.
(2) $\left.p\right|_{X-A}$ is continuous and 1-1. Show it is an open map:
$U \subset X-A$ open $\Rightarrow U$ open in $X \Rightarrow p(U)$ is open since $p^{-1} p(U)=U$ is open is $X \amalg Y$.

정리 3 (Separation Axiom)
$X, Y: T_{1} \Rightarrow X \cup Y: T_{1}$
$X, Y:$ normal $\Rightarrow X \cup_{f} Y$: normal
Ref. See Munkres p. 210
정의 2 (Collared pair) (X, A) is called a collared pair if
(1) $A \subset X$ is closed.
(2) X is Hausdorff.
(3) Points in $X-A$ can be separated from $A: \forall x \in X-A, \exists U, V$: disjoint open sets s.t. $x \in U$ and $A \subset V$.
(4) A has a collaring B in $X: \exists$ open $B \supset A$ s.t. A is a strong deformation retract of B.

명제 $4(X, A)$: a collard pair, $Y:$ Hausdorff $\Rightarrow\left(X \cup_{f} Y, Y\right):$ a collard pair.
In fact, B : a collaring of $A \Rightarrow Y \cup p(B)$: a collaring of Y.
증명 (1) : clear from 정리 2(1)
(2) $X \cup Y$ is Hausdorff:

Case 1. $z_{1}, z_{2} \in X \cup \cup_{f} Y-Y \cong X-A \Rightarrow$ clear.
Case 2. $z_{1} \in Y, z_{2} \notin Y \stackrel{\text { 정의 }}{\Rightarrow}{ }^{2(3)} \exists U \ni z_{2}, V \supset A$
$\Rightarrow p(U)$: open neighborhood of z_{2} and $p(V) \cup Y$: open neighborhood of z_{1} gives a separation. (Note $p^{-1}(p(V) \cup Y)=V \amalg Y$: open in $X \amalg Y$.)

Case 3. $z_{1}, z_{2} \in Y:$ Let $z_{1} \in V_{1}, z_{2} \in V_{2}$ be a separation and $r: B \rightarrow A$ a strong deformation retract. Let $U_{i}=r^{-1} f^{-1}\left(V_{i}\right)$: open in X. $\Rightarrow p\left(U_{1}\right) \cup p\left(V_{1}\right)$ and $p\left(U_{2}\right) \cup p\left(V_{2}\right)$ give a separation for z_{1} and z_{2}
(Note $p^{-1}(p(U) \cup p(V))=U \amalg V$.)
(3) $z \notin Y$. Then use 정의 2(3) to get disjoint open sets $U \ni z$ and $V \supset A \Rightarrow$ $p(U)$ and $p(V) \cup Y$ give a separation for z and Y.(cf. Case2.)
(4) Let $D: i d \simeq i \cdot r($ rel $A)$ be a strong deformation retract:
$D: B \times I \rightarrow B$ s.t. $\left\{\begin{array}{cc}D(a, t)=a, & \forall a \in A \quad t \in I \\ D(b, 0)=b, & \forall b \in B \\ D(b, 1)=r(b) \in A, & \forall b \in B\end{array}\right\}$

Define $\bar{D}: p(B) \cup Y \times I \rightarrow p(B) \cup Y$ by $\bar{D}(z, t)=\left\{\begin{array}{cl}z, & z \in Y \\ p(D(b, t)), & z=p(b), \\ \quad b \in B-A\end{array}\right\}$

$\Rightarrow \bar{D}$ is continuous by the following fact.
Fact. $p: X \rightarrow Y$ quotient,C : locally compact Hausdorff. $\Rightarrow p \times i d: X \times C \rightarrow Y \times C$ is a quotient map.
증명 Ref. Munkres p. 113

