
II. CW-complex
������� 1 A CW-complex X is a Hausdorff space along with a family {eα} of
”open cells” such that the following conditions are satisfied.
Let Xp =

⋃

{eα| dim eα ≤ p}. (p-skeleton)
(1) X =

∐

eα(disjoint union).
(2) ∀n-cell eα, ∃ a characteristic map ϕα : (Dn, ∂Dn) → (X,Xn−1) such that
ϕα| ◦

Dn
is a homeomorphism onto eα.

(3) (Closure finiteness) Each ēα is contained in the union of finitely many open
cells.
(4) (Weak topology) A ⊂ X is closed if and only if A ∩ ēα is closed in ēα for
all α.

Note.
(1) Let ėα = ēα − eα. Then ϕα : (Dn, ∂Dn)→ (ēα, ėα) is onto.��
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(2) For a finite CW-complex, condition (3) and (4) are automatic.

������� 2 Let X be a CW-complex. A subcomplex of X is a subset Y along
with a subfamily {eβ} of the cells in X such that Y =

⋃

eβ with ēβ ⊂ Y for
all β.

Note. A subcomplex Y is closed and a CW-complex in its own right.��
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Claim If B ⊂ Y with B ∩ ēβ is closed in ēβ for all β, then B is closed in X.
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Example. Xp =
⋃

{eα| dim eα ≤ p}= p-skeleton of X is a subcomplex (and
hence closed).

������� 3 dim X= sup{dim eα | eα ⊂ X}

�������� 1 Let X be a CW-complex with
∐

eα = X.
(1) f : X → Y is continuous if and only if f |ēα is continuous for all α.
(2) F : X × I → Y is continuous if and only if F |ēα×I is continuous for all α.��
	���
�  ���� � $& (  ¢¡£ �� ) ¤¥ �b�¦¨§_©t $& !�"#«ª � ∗ ./1024365¬V �>X�Y# L �  � .
(  ¢¡£ �� )
A space X =

⋃

Xα has a coherent topology with respect to Xα (or X is a
coherent union of Xα) if
A ⊂ X is closed ⇔ A ∩Xα is closed in Xα for all α
or equivalently, a natural projection p :

∐

Xα → X is a quotient map
or equivalently, f : X → Y is continuous ⇔ f |Xα : Xα → Y is continuous for
all α.��
	���
�®­¯ °²±,³ 9.

∗ !�"#«ª � (Theorem 20, of Munkres, p.113)
p : X → Y , a quotient map. C : locally compact, Hausdorff
⇒ p× id : X × C → Y × C is a quotient map.
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