III.2 $H_q(M^n, M-A), q \geqslant n$

idea : Compare $H_n(M, M - A)$ with ΓA .

6. Suppose $U^{open} \subset M$. Then $\beta_U \in H_n(M, M - U)$ can be viewed as a section as before and we have a homomorphism $j_U : H_n(M, M - U) \to \Gamma U$.

$$\beta_U \mapsto j_U(\beta_U) : x \mapsto \beta_U|_x$$

In general, $\forall A \subset M$, does $j_A : H_n(M, M - A) \to \Gamma A$ (defined by " β " = $j_A(\beta) : x \mapsto \beta|_x$) define a homomorphism, i.e., is $j_A(\beta)$ continuous section on A?

증명 Want " β " is locally constant, i.e., $\forall a \in A$, $\exists V$ and β_V s.t. $\beta|_x = \beta_V|_x$, $\forall x \in A \cap V$.

Recall : Can represent $\beta = \{b\}$ with $\partial b \subset M - A$.

 $|\partial b|$: compact $\Rightarrow U=M-|\partial b|$ is open and choose V, a coordinate ball neighborhood of a with $V\subset U.$

$$(M, M - U) \rightarrow (M, M - V) \qquad \Rightarrow \qquad \beta' = \{b\} \longrightarrow \exists \beta_V$$

$$\downarrow \qquad \qquad \downarrow \cong \\ (M, M - A) \rightarrow (M, M - a) \qquad \qquad \beta'|_A = \beta \rightarrow \beta|_a$$

And $\forall x \in A \cap V$, $\beta_V|_x = \beta'|_V|_x = \beta'|_x = \beta'|_A|_x = \beta|_x$.

7. When is $j_A: H_n(M, M-A) \to \Gamma A$ an isomorphism? Know: true if A=U, a coordinate ball.

$$H_n(V, V - U) \xrightarrow{excision:\cong} H_n(M, M - U) \xrightarrow{j_U} \Gamma U$$

$$\downarrow \psi_*:\cong \qquad \qquad \downarrow \psi_*:\cong$$

$$\mathbb{Z} = H_n(\mathbb{R}^n, \mathbb{R}^n \backslash D) \xrightarrow{j_D:\cong} \Gamma D = \mathbb{Z}$$

Also note $H_q(M, M - U) \cong H_q(\mathbb{R}^n, \mathbb{R}^n \setminus D) \cong \widetilde{H_{q-1}}(S^{n-1}) = 0$ if q > n.

Let $M = \mathbb{R}^n$.

If A is a "nice" compact set, then j_A is \cong .

e.g. $A = D, [0, 1] \times [0, 1], [0, 1], \text{ point}, \cdots \text{ etc.}$

But note that if $A = M = \mathbb{R}^1$, $H_1(\mathbb{R}^1, \mathbb{R}^1 \setminus \mathbb{R}^1) = H_1(\mathbb{R}^1) = 0$ but $\Gamma \mathbb{R}^1 = \mathbb{Z}$.

Note. A: closed. Then

$$H_n(M, M-A) \xrightarrow{j_A} \Gamma A$$

$$\downarrow^{j_A} \qquad \qquad \Gamma_c A$$

i.e., $j_A(\beta) \in \Gamma_c A$, $\forall \beta$ where $\Gamma_c A$ consists of sections with compact support.

증명Let $\beta = \{b\}$: relative cycle $\Rightarrow |b|$: compact.

Then $\forall x \in (M - |b|) \cap A, \beta|_x = 0$ since $|b| \subset M - x$. Think of this in chain level.

$$0 \to S_n(M-A) \to S_n(M) \to S_n(M)/S_n(M-A) \to 0$$

$$\downarrow \qquad \qquad \downarrow = \qquad \qquad \downarrow$$

$$0 \to S_n(M-x) \to S_n(M) \to S_n(M)/S_n(M-x) \to 0$$

 $\therefore \beta$ has a support $\subset |b| \cap A$: compact

So the right statement is $j_A: H_n(M, M-A) \to \Gamma_c A$. Furthermore, j_A is natural:

$$B \subset A \subset M \Rightarrow$$
 $H_n(M, M - A) \xrightarrow{j_A} \Gamma A$ commute.
 $\downarrow^{\rho_B^A} \qquad \qquad \downarrow^{restriction}$
 $H_n(M, M - B) \xrightarrow{j_B} \Gamma B$

Exercise. 숙제 11.

$$f:(M,A) \xrightarrow{\cong} (N,B) \Rightarrow H_n(M,M-A) \xrightarrow{j_A} \Gamma A$$
 commute.
$$\downarrow^{f_*:\cong} \qquad \downarrow^{"f_*"} H_n(N,N-B) \xrightarrow{j_B} \Gamma B$$

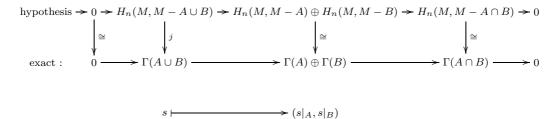
- **8.** (Theorem) Let M be an n-dimensional manifold and $A^{\text{closed}} \subset M$. Then
- (1) $H_q(M, M A) = 0$ for q > n
- (2) $H_n(M, M A) \cong \Gamma_c A$

증명

보조정리 1 (MV) A, B $closed \subset M$. If the theorem is true for A, B and $A \cap B$, then so is for $A \cup B$.

중명 $A,B: \operatorname{closed} \Rightarrow M-A, M-B \text{ open with } (M-A)\cap (M-B) = M-A\cup B$ $(M-A)\cup (M-B) = M-A\cap B$

relative MV:



$$(a,b) \longmapsto a|_{A \cap B} - b|_{A \cap B}$$

П

- (i) follows from relative MV-sequence.
- (ii) follows from 5-lemma.

보조정리 2 If $M = \mathbb{R}^n$ and A is a compact subset of \mathbb{R}^n , then the theorem is true.

증명 Know: The theorem is true for a "nice" compact set $A \subset \mathbb{R}^n$, for instance A =rectangle.

By lemma 1, the theorem is true if A is a finite union of rectangles by induction on number of rectangles.

이제 compact set A에 대하여 정리가 성립함을 보이자.

먼저 $j_A: H_n(M, M-A) \to \Gamma A = \Gamma_c A$ 가 onto 임을 보인다.

- (i) For $s \in \Gamma A$, there exists an open set U containing A such that s can be extended to \bar{s} on U.
- pf) s(A) is compact $\Rightarrow s(A)$ lies in finitely many sheets of $\mathbb{R}^n_{\mathcal{O}} \cong \mathbb{R}^n \times \mathbb{Z}$. Let $A_i = s^{-1}(\mathbb{R}^n \times i)$ for $i \in \mathbb{Z}$. A_i is compact.

So there exists an open set U_i containing A_i such that U_i 's are pairwise disjoint and s can be extended to \bar{s} over $U = \bigcup U_i$.

(ii) Cover A by finitely many rectangles in U and let A' be the union of rectangles.

Then the following diagram commutes.

$$H_n(M, M - A') \xrightarrow{j_{A'}} \Gamma A' \ni \bar{s}|_{A'}$$

$$\downarrow \qquad \qquad \downarrow \text{restriction}$$

$$H_n(M, M - A) \xrightarrow{j_A} \Gamma A \ni s$$

임의의 $s\in\Gamma A$ 에 대하여 (i)에 의하여 \bar{s} 가 존재하므로 $\bar{s}|_{A'}$ 은 s에 대응되는 $\Gamma A'$ 의 원소이다. 또한 $j_{A'}$ 은 isomorphism이므로 j_A 는 onto이다.

이제 j_A 이 1-1이고 $H_q(M, M-A)=0$ for q>n임을 보이자. Let $\alpha\in H_q(M, M-A)$ and assume $j_A(\alpha)=0$ if q=n. Suppose $\alpha=\{a\}$ with $\partial a\subset M-A$. Since $|\partial a|$ is compact, $V=M-|\partial a|$ is open. Let $\alpha'=\{a\}\in H_q(M, M-V)$.

(q = n): Let $U \subset V$ be an open set containing A each of whose components intersects A. Let A' be a finite union of rectangles which covers A and is contained in U.

Then $j_U(\alpha'|_U)$ is a section on U which has a zero on each of its component.

(: Each component intersects A and $j_A(\alpha) = 0$.)

By uniqueness of sections on connected sets, $j_U(\alpha'|_U) = 0$.

$$H_{n}(M, M - U) \xrightarrow{j_{U}} \Gamma U \qquad \qquad \alpha'|_{U} \longmapsto 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{n}(M, M - A') \xrightarrow{\cong} \Gamma A' \qquad \qquad \alpha'|_{A'} \longmapsto 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H_{n}(M, M - A) \xrightarrow{j_{A}} \Gamma A \qquad \qquad \alpha \longmapsto 0$$

Therefore by the above diagram, $\alpha'|_{A'} = 0$ and hence $\alpha = 0$. (q > n): The theorem is true for A'. So $\alpha'|_{A'} = 0$ and hence $\alpha = 0$.

정리의 증명

Step 1. $A^{\text{compact}} \subset M$:

A is a finite union of compact sets each of which is contained in a coordinate ball neighborhood ($\approx \mathbb{R}^n$) and apply lemma 1 and lemma 2.

Step 2. $A \subset U^{\text{open}} \subset \overline{U}^{\text{compact}} \Rightarrow \text{The theorem is true for } A \subset U(=M)^1$ where A is a closed subset of U:

 $^{^{1}}$ manifold의 open subset은 manifold이므로 U=M으로 하여도 무방하다.

$$\partial U = \overline{U} - U$$
 is compact and $U - \overline{A} = U - A$.
Consider $(M, M - \partial U, M - (\partial U \cup \overline{A}))$.
 $(q > n)$:

$$H_{q+1}(M, M-\partial U) \to H_q(M-\partial U, M-(\partial U \cup \overline{A})) \to H_q(M, M-(\partial U \cup \overline{A})) \to \cdots$$

By excision theorem, $H_q(M - \partial U, M - (\partial U \cup \overline{A})) = H_q(U, U - A)$. By step 1, $H_{q+1}(M, M - \partial U) = 0$ and $H_q(M, M - (\partial U \cup \overline{A})) = 0$. Therefore $H_q(U, U - A) = 0$. (q = n):

$$0 \longrightarrow H_n(U, U - A) \longrightarrow H_n(M, M - (\partial U \cup \overline{A})) \longrightarrow H_n(M - \partial U)$$

$$\downarrow_{j_A} \qquad \qquad \downarrow_{\cong (\text{step 1})} \qquad \downarrow_{\cong (\text{step 1})}$$

$$0 \longrightarrow \Gamma_c A \xrightarrow[\text{extension by 0} \\ \text{outside support} \qquad \qquad \Gamma(\partial U \cup \overline{A}) \xrightarrow[\text{restriction}]{} \Gamma(\partial U)$$

So, j_A is an isomorphism by 5 lemma.

Step 3.(general case)

Show $j_A: H_n(M, M-A) \to \Gamma_c A$ is onto:

 $\forall s \in \Gamma_c A$, let supp s = K.

Then K is compact and $\exists U$ such that $K \subset U \subset \overline{U}^{\text{compact}}$ Let $A' = A \cap U$.

$$H_n(U, U - A') \xrightarrow{\cong (\text{step 2})} \Gamma_c A' \ni s|_{A'}$$

$$\downarrow^{i_*} \qquad \qquad \downarrow^{\text{extension by 0}}$$

$$\downarrow^{i_*} \qquad \qquad \downarrow^{i_A} \qquad \qquad \downarrow^{\text{outside } K}$$

$$H_n(M, M - A) \xrightarrow{j_A} \Gamma_c A \ni s$$

So, j_A is onto.

Show j_A is 1-1 and $H_q(M, M - A) = 0$ if q > n:

 $\alpha \in H_q(M, M - A)$ and assume $j_A(\alpha) = 0$ if q = n.

If $\alpha = \{a\}$ with $\partial a \subset M - A$, |a|: compact $\Rightarrow |a| \subset U \subset \overline{U}^{\text{compact}}$.

Let $A' = A \cap U$. Apply the above diagram.

q=n: Since $|a|\subset U$, $\alpha'=\{a\}\in H_n(U,U-A')$. So in the above diagram, $i_*(\alpha')=\alpha$. Since $j_A(\alpha)=0$ and $0|_{A'}=0$, $j_{A'}(\alpha')=0$. So $\alpha'=0$ and hence $\alpha=0$.

$$q > n$$
: By step 2, $\alpha' = \{a\} \in H_q(U, U - A') = 0$. So $\alpha = 0$.

9. Consequences of the theorem

(1) Let A be connected and closed but not compact. Then $H_n(M, M-A) = 0$. In particular if M is connected but not compact then $H_n(M) = 0$.

증명 If $s \in \Gamma_c A$, $\nu \circ s : A \to \mathbb{Z}^{\geq 0}$ is continuous and = 0 at some $a \notin \text{supp } s$. So $\Gamma_c A = 0$

(2) If M is orientable along A, A is compact and has k components, then $H_n(M, M - A) \cong \mathbb{Z}^k$.

증명 $\Gamma_c A = \Gamma A \cong \mathbb{Z}^k$ by 5. (2).

(3) If $A \subset \mathbb{R}^n$ is compact and has k components, then $\widetilde{H}_{n-1}(\mathbb{R}^n - A) \cong \mathbb{Z}^k$. 중명 From homology sequence of pair $(\mathbb{R}^n, \mathbb{R}^n - A)$, we get

$$0 \to H_n(\mathbb{R}^n, \mathbb{R}^n - A) \to \widetilde{H}_{n-1}(\mathbb{R}^n - A) \to 0$$

So $\widetilde{H}_{n-1}(\mathbb{R}^n - A) \cong H_n(\mathbb{R}^n, \mathbb{R}^n - A) \cong \mathbb{Z}^k$ by (2).

(4) If M is connected and closed², then $H_n(M) = \begin{cases} \mathbb{Z}, & \text{if } M \text{ is orientable} \\ 0, & \text{if } M \text{ is non-orientable} \end{cases}$ Clear from 5. (3) and (4).

Remark. For a PID R, $H_n(M) = \begin{cases} R, & \text{if } M \text{ is } R-\text{orientable} \\ 0, & \text{if } M \text{ is not } R-\text{orientable} \end{cases}$

10. Fundamental class of M and degree

A choice of generating section is an orientation and the corresponding homology class ζ^3 is called the **fundamental (orientation) class** of M, i.e., $\zeta|_x \in H_n(M, M - x)$ is the preferred orientation at x for all $x \in M$.

Let M^n, N^n be oriented closed connected manifolds. For $f: M \to N$, if $f_*(\zeta_M) = k \cdot \zeta_N$, k is called the **degree** of f.

숙제 14 $\forall y \in N$, "regular value" i.e., $\forall x \in f^{-1}(y)$, f is a homeomorphism on a neighborhood U_x $(f|_{U_x}: U_x \stackrel{\cong}{\to} V_y)$. Then

$$degf = \sum_{x \in f^{-1}(y)} deg_x f$$

 $^{^{2}}$ A manifold M is closed if it is compact without boundary.

 $^{^{3}[}M]$ 으로 쓰기도 한다.

where $deg_x f$ is defined by $f|_{U*}: H_n(U, U-x) \to H_n(V, V-y)$. In particular, if $p: M \to N$ is a k-fold covering, degp = k (with respect to the induced orientation on M).

숙제 **15** (22.43) (22.49) (22.50)*