IV.Cohomology of a chain complex

1. Let C = {C,, 0} be a chain complex of abelian groups (or R-modules) and
G be an abelian group (or an R-module).

C?(C;G) = Hom(C,, G) : p-dimensional cochain group of C.
(or Hompg(C?, G) : p-dimensional cochain R-module of C.)

coboundary operator § : C? — CP*! is the dual of 9 : Cpy1 — C),.
= §% = 0, since 9% = 0.

= Cpiz % Cp1 == Cp = d(a) == a0 0% FHr], =T
2 2
LN e 0*(a) := (0d)od = a0d? = 09]
e 7Rt ahebA,
N p+ligpi0p_lg...
= e ortt v & orl . 0 = {CP, 5} : cochain complex.

Homology of C* is the cohomology of C :
ZP(C;G) :=ker § C C?, BP(C;G) :=1imd C Z*(C; Q)
H?(C;G) = Z°(C;G)/BP(C; G)
: cohomology of C with coefficient G in dimp

Simplicial cohomology if C is the simplicial chain complex.
Singular cohomology if C is the singular chain complex.

2. Cohomology of augmented chain complex,
4>Cp4>4>014>00;290

is called the reduced cohomology of C and denoted by HP (C; Q).

Ip((. — p(C. :
Note { HY(C; G) = HY(C; G) itp>0 (Exercise)

H(C;G) = H'(C;:G) PG
3. Functorial property

A chain map ¢ : C — D induces a chain map 5 : D* — C* between the
cochain complexes.



s erl“i)Cp%... = ...ecp+1éecp<7...

bpi1) | (=TA

. p+184>Dp4>"' ...er—i-lfer(;...
p00=00¢=¢00=00p=050p=000% 4.

Since 5 is a chain map, it induces a homomorphism ¢* : H?(D; G) — H?(C; G).
Therefore,

f:X—=Y

= fi 1 Sp(X) — Sp(Y) : singular chain map.

= f*: SP(Y) — SP(X) : singular cochain map.

= f*: H(Y;G) — H?(X;G)

,where H?(X;G) = H?(S(X); G)

. singular cohomology of X with coefficient G.

Similarly for the simplicial case.

Now

X f Y 9 7 é(gof)gzgﬁﬁofﬁﬂ
?0/ = (gof)=frog
NS = (gof) = f*og" in HY

And id.; = id. = id.* = id.
o HP : Top — Abel. groups(or R — Mod) : contravariant functor.

4. Chain homotopy and equivalence
Let D : ¢ ~1 :C — C’ be a chain homotopy, i.e., 0D + DJ = ¢ —

D pHi,(jpgcp_l%... = ...ecvp—i-l((rcpecp_le...

e b 27els 7

/

= Chyy 5= C) = C

p g ~p-1

/

.'.508:—1-5;05:;?:—12
=d0oD+Dod=¢—1

= D : ¢ ~ 1), cochain homotopy.
In this case, ¢* = 9*.

[ ...eC’p—f—léLC’peC,p_l(;...



¢ : C — (', a chain homotopy equivalence
= ¢, and ¢* are isomorphisms.

HEAE] 1 frg: X —-Y = fi~g:S(X)— SY).
ff=9:H(Y)— H*(X)

Similarly for pairs, f~g:(X,A) — (Y, B),

where HP(X, A; G) := HP(S(X, A); G).

5. Long exact sequence for pairs.
Recall

0— S(A) — S(X)— S(X)/S(A) =S(X,A) = 0: s.es.
W H(A) — Hy(X) — Hy(X, A) S Hy1(A) — - : Les. of (X, A).

More generally,

0—-C—D—E—0: se.s.
= Hy(C) — Hy(D) — Hy(€) 5 H, 1(C) — -+ : Les.

snake
—_— -

If the dual sequence of a short exact sequence is short exact, then we still
obtain a long exact sequence by the snake lemma. But in general,

0—-A—B—C—=0:ses.
£ 0— A*«— B*— C* 0 : s.es.

i.e., Hom functor does not preserve short exact sequence!

Exactness of Hom functor
Ae] 2 (1) BLC -0 : evact = Hom(B,G) & Hom(C,G) «— 0 : ezact.
(Q)ALBiC—%): exact

= Hom(A, G) £ Hom(B,G) & Hom(C,G) — 0 : ezact.
(3)0 — A— B— C — 0: split exact.

= 0« Hom(A, G) Ed Hom(B,G) & Hom(C,G) «— 0 : split ezact.



e I
=¥ (1) B ¢ Show g is one to one : g(a) =aog=10
)=$* éa = o = 0 since g is onto.
¢ > of=0=Fog=0.
j o FW=por=
\ W = ker 3 D im f =ker g and C' = B/ker g
B = (3 induces 3 : C' — G and
g(B)=Pog=0
(3)Since short exact sequence splits, there exists p : B — A such that po f =
idy.
0—~ALB%C—0
D
= fo D= id. = id. = fis onto and Hom-sequence splits. 0
Remark(1)
O%Z%Z»Z/Q%O exact
=  0< Hom(Z,Z) L Hom(Z,Z) < Hom(Z/2,Z) < 0  exact(?)
E A9 EY, 94 Hom(Z,Z) = Zo| 1 WebA [ 29 12 22 B+ x29
mapd= & 5 Atk WEhA onto7t 2 §laL, =& exact”} ofUth

(2) In general,
0=2F2Z—~2Zn—=0

Hom(Z, G) % Hom(Z,G) <= Hom(Z/n,G) < 0

=
a homomorphism o : Z — G
717 is determined by a(1) € G and
o Jo hence Hom(Z, G) = G. N
e fla)(1) = a(f(1)) = a(n) = na(l) = f(a) = na
= Hom(Z/n,G) = ker (G =5 G)
Wt G = Z/mol™ Hom(Z/n,G)= 18 Al ¥ =717 (Exercise) ] 5278 ¢
£ ALt

7 finitely generated abelian group A°l tj&] A} Hom(A, G)

| -



g 4 gk,

Return to long exact sequence:

A S, (X, A)7} freeo] &

0— Sp(A) - Sp(X) - Sp(X> A) =0

splits for each p, hence by the above argument,

0~ SP(A) < SP(X) <— SP(X,A) < 0

is exact(split) for each p. Applying snake lemma, we obtain

- < HP(A;G) = HP(X;G) = HP(X, A G) == HP7H(AG) = -+

Of course, it is also true for reduced cohomology.

Note. In the above l.e.s., the connecting homomorphism §*is given as follows.

! ! !

0= OP-H > Dp+1 > Ep+1 >0

ay ay oy
O»Cp—>Dp—>Ep90

O ——=o

)

&0 —0

T T T

0= Cp+1 < DP+1 < EP+1 <0

bt

0= (CP<=— DP =<— EP < ()

Furthermore, long exact sequence is functorial.

0 —=C—=D—=&—0

oo

T T T
(I
e~ QO

chain maps

0‘>C/‘>’D/‘>5/‘>O



0<—Cr<=—Dr<— & <0 cochain maps

(I B

Oecl*e’l)/*eg/*eo

= Functoriality of long exact sequence follows from the earlier result. In
particular, f : (X, A) — (Y,B) = f.(f*resp.) induces a homomorphism
for long exact sequence of (X, A)((Y, B),resp.) to the long exact sequence of
(Y, B)((X, A),resp.).

Long exact sequence of triples : A C B C X = 3 a functorial long exact
sequence,

.~ HP(B,A) < HP(X,A) < HP(X,B) ~ H""Y(B,A) — ---
é

k3l E, oFel o] short exact sequenced| A S(X)/S(B) 7} free 0] 2 2 | sequence 7}
splits3F 2 9 ol A2} Z+o] dualizedt! snake lemmaS 2§31 T 7] uf] & 9]

o}

0 = S(B)/S(A) — S(X)/S(A4) — S(X)/S(B) — 0
6.(Excision)
Let U C A.

Then i : (X —U,A—U) — (X, A) induces an isomorphism * : H*(X, A) —
H (X —U,A-U).

% (1st proof)
Recall i : SY(X) — S(X) is a chain homotopy equivalence, where U =
{X — U, A}, and hence an isomorphism on cohomology.

0 — S(4) = S“(X) = SU(X)/S(A) =0

|= Vi v
0 — S(4) — S(X) — S(X)/S(4) — 0

Since SY(X)/S(A) is free, we obtain the following diagram.



- HP(A) < HP(SY(X)) < HP(SY(X)/S(A) = -

ot e M
- < HP(A) <— HP(X) HP (X, A) <—r -

By the 5-lemma, j* is an isomorphism.

S(X-U)+5(A S(X-U
Furthermore, S%(X)/S(A) = S80S & SO — S(X — U, A - 1)
and this completes the proof.

I

(2nd proof)Algebraic Mapping Cone
(1)Construction

Let f : C — D be a chain map. Then mapping cone C'f = &£ is defined by
E, =D, C,_1 with 9(d,c) = (0d + f(c), —0c).

check 9% =0 :

o (0 fN(O [\ _[(0* 0f—fo\ _
8‘(0 —(9)(0 —8)_<0 o2 )_O
Now

0=D, >E,2C,, >0
where i(d) = (d,0) and p(d,c) = c¢. And

0> Dpr1 = Dy @PC, — C, — 0 commutes

Vo yo= 2 —fa j-o
0— D:n - Dp®0p—l - Cpfl — 0

0=>D>&2¢0 =0 s.e.s. of chain complexes.

where (C’I;, 0) = (Cp—1, —0). Furthermore, by applying snake lemma,

= -+ — Hy(D) — Hy(€) — H,(C') - Hp1(D) — -+~



= — Hy(D) — H,(Cf) = Hy1(C) = Hys(D) — Hya(Cf) — -+

o fe t Ho(C) — H,(D) is an isomorphism if and only if H.(C'f) = 0.
Similarly for cohomology also, if C is free so that the above short exact se-
quence splits.

(2) Recall the following fact.

Let C be a free chain complex. Then H,(C) = 0(i.e. C is acyclic) if and only if
id. ~ O(chain contractible). It easily follows from the comparison theorem.

Review of comparison theorem

= X, g Xn-1 Q> e = X £> Xo S A —=0 augmented free chain complex over A
v v v/ v fo ¢7
/ o) / o 10 /€ / . ’
X, T Xy =X, >~ X~ A4 >0 resolution of A

= 1.7 can be lifted to a chain map f: X — X .
2. Any two liftings are chain homotopic.

Let f : C — D be a chain map of free chain complexes. Then the followings
are equivalent.

1. H(Cf)=0
2. f is a chain homotopy equivalence.
3. f. is an isomorphism.

Z 1 Clearly 3 implies 1 and 2 implies 3.
Remains to show 1 implies 2.

H(E) =0= 3T : D,PC,.1(= E,) — D1 PCy(= E,+1) such that
T +T0 = 1.

R, E,
Let Tp:(g: Sﬁf) gy : Dy — C,.

B (0 f\(R E R E\ [0 f
oreno- (3 L) (2 ) (5 5)(0 )
B <8R+fg 8E+fS) N (Ra Rf+E(—8))

—\ -9g -08 g0 gf +S(-9)



= O0R+ fg+R0O=1, —0g+ g0 =0, —0S+gf—S0=1

8R+Ra:1_f9} = ¢ is a chain map and R is a chain
dg = g0 homotopy : 1 >~ fg
0S+S0=gf—-1=8S:1~gf

= chain map ¢ is a chain homotopy inverse of f and f is a chain homotopy
equivalence.

2nd proof of excision theorem
%1 Since i, is an isomorphism, 7 is a chain homotopy equivalence. Therefore,
1* is an isomorphism. 0

(3) Note Let C and D be free chain complexes , R be a P.I.D. and v, : H,(C) —
H,(D),Vp. Then 7 is induced by a chain map (: C — D).

2742 3 H,(C)~ H.(D) = H*(C) = H*(D)

% Let C and C' be free chain complexes and 1, : H,(C) — H,(C') be homo-
morphisms, V p.

0 — Bp j% Zp — Hp — O free
v 36w
0 — B]/) — Z;J — H]:J —- 0 acyclic

By the comparison theorem, there exist «, § such that the above diagram com-
mutes. We want ¢ such that the following diagram commutes.

s

AN
O‘>Zpi>0pstp71‘>O
V8 yo Ja
0—~2,—-C, 2B, —~0

A4

’
S



Since B,_; and B;_l are free, C, = Z,@ D, and CI/J = Z;@D;), where

D, = s(B,_1) and D, = 5 (B,_;).
Let ¢ = (g 2) Then the above diagram commutes. Hence,

o
Cp - Bp—l — Zp—l - Cp—l

Vo jo |8 o

/ ’ ’ /
Cp - Bp—l e Zp—l e Cp—l

0

= ¢ is a chain map and ¢|; = [ certainly induces 7 in the first diagram.

G iftp=0

7. Hp(pt.;G):{ 0 ifp>0

Z v Recall

Remark
(contravariant) functoriality property

long exact sequence for pairs with the existence of §*
homotopy invariance

excision

dimension axiom 7

O

= Eilenberg-Steenrod axioms for (co)homology theory and unique for finite

CW-pairs (Reference : Vick)

8. Let { X, } be the family of path components of X. Then H?(X) = [[H?(X,)

for any coefficient G.

10



S8 5p(X) = D 5p(Xa), Zp(X) = D Zp(Xa), By(X) = @ By(Xa) and Hom(€P Ao, B) =
[[Hom(A,, B) |

9.(MV-sequence)
Same as homology case with reversed arrow of homs.

<A 16 Check!

G ifp=n

0 otherwise
G ifp=n
0 otherwise

10. H?(S™;G)
HP(D™ 0D™; G) = {
Same MV-sequence for adjunction space, etc.

11. Let X be a CW-complex with C(X) = {C,(X), 0} (cellular chain com-
plex). Then H?(C(X);G) = HP(X;G)
Z7 See 6.(3) =42 1.(R:P.LD.) .

11



