IV.Cohomology of a chain complex

1. Let $C = \{C_p, \partial\}$ be a chain complex of abelian groups (or R-modules) and G be an abelian group (or an R-module).

$$C^p(\mathcal{C};G) = \operatorname{Hom}(C_p,G) : p$$
-dimensional cochain group of \mathcal{C} .
(or $\operatorname{Hom}_R(C^p,G) : p$ -dimensional cochain R -module of \mathcal{C} .)

coboundary operator $\delta: C^p \to C^{p+1}$ is the dual of $\partial: C_{p+1} \to C_p$. $\Rightarrow \delta^2 = 0$, since $\partial^2 = 0$.

$$ightarrow C_{p+2} \stackrel{\partial}{ o} C_{p+1} \stackrel{\partial}{ o} C_p o \cdots$$
 $\delta(\alpha) := \alpha \circ \partial$ 로 정의되며, 또한 $\delta^2(\alpha) := (\alpha \circ \partial) \circ \partial = \alpha \circ \partial^2 = 0$ 이 성립한다. 따라서,

$$\cdots \to C_{p+1} \xrightarrow{\partial} C_p \xrightarrow{\partial} C_{p-1} \xrightarrow{\partial} \cdots$$

$$\Rightarrow \cdots \leftarrow C^{p+1} \xleftarrow{\delta} C^p \xleftarrow{\delta} C^{p-1} \leftarrow \cdots : \mathcal{C}^* = \{C^p, \delta\} : \text{ cochain complex.}$$

Homology of \mathcal{C}^* is the cohomology of \mathcal{C} :

$$Z^p(\mathcal{C};G) := \ker \delta \subset C^p, B^p(\mathcal{C};G) := \operatorname{im} \delta \subset Z^p(\mathcal{C};G)$$

 $H^p(\mathcal{C};G) := Z^p(\mathcal{C};G)/B^p(\mathcal{C};G)$
: cohomology of \mathcal{C} with coefficient G in dim p

Simplicial cohomology if C is the simplicial chain complex. Singular cohomology if C is the singular chain complex.

2. Cohomology of augmented chain complex,

$$\cdots \to C_p \to \cdots \to C_1 \to C_0 \xrightarrow{\epsilon} \mathbb{Z} \to 0$$

is called the reduced cohomology of \mathcal{C} and denoted by $\widetilde{H}^p(\mathcal{C}; G)$.

Note
$$\begin{cases} \widetilde{H}^p(\mathcal{C};G) = H^p(\mathcal{C};G) & \text{if } p > 0 \\ H^0(\mathcal{C};G) = \widetilde{H}^0(\mathcal{C};G) \bigoplus G \end{cases}$$
 (Exercise)

3. Functorial property

A chain map $\phi: \mathcal{C} \to \mathcal{D}$ induces a chain map $\widetilde{\phi}: \mathcal{D}^* \to \mathcal{C}^*$ between the cochain complexes.

$$\cdots \to C_{p+1} \xrightarrow{\partial} C_p \to \cdots \qquad \Rightarrow \qquad \cdots \leftarrow C^{p+1} \xleftarrow{\delta} C^p \leftarrow \cdots
\downarrow^{\phi_{p+1}} \bigvee^{\phi_p} \downarrow^{\phi_p} \qquad \qquad \uparrow^{\phi_{p+1}} \overbrace{\phi_p} \uparrow^{\phi_p} \uparrow
\cdots \to D_{p+1} \xrightarrow{\partial} D_p \to \cdots \qquad \cdots \leftarrow D^{p+1} \xleftarrow{\delta} D^p \leftarrow \cdots$$

$$\phi \circ \partial = \partial \circ \phi \Rightarrow \widetilde{\phi \circ \partial} = \widetilde{\partial \circ \phi} \Rightarrow \delta \circ \widetilde{\phi} = \widetilde{\phi} \circ \delta$$
이 성립.

Since $\widetilde{\phi}$ is a chain map, it induces a homomorphism $\phi^*: H^p(\mathcal{D}; G) \to H^p(\mathcal{C}; G)$. Therefore,

$$f: X \to Y$$

 $\Rightarrow f_{\sharp}: S_p(X) \to S_p(Y): \text{ singular chain map.}$

 $\Rightarrow f^{\sharp}: \hat{S}^p(Y) \to \hat{S}^p(X):$ singular cochain map.

$$\Rightarrow f^*: H^p(Y;G) \to H^p(X;G)$$

,where
$$H^p(X;G) = H^p(S(X);G)$$

: singular cohomology of X with coefficient G.

Similarly for the simplicial case.

Now
$$X \xrightarrow{f} Y \xrightarrow{g} Z$$

$$\uparrow^{\sigma} f \circ \sigma = f_{\sharp}(\sigma)$$

$$\Rightarrow (g \circ f)_{\sharp} = g_{\sharp} \circ f_{\sharp}$$

$$\Rightarrow (g \circ f)^{\sharp} = f^{\sharp} \circ g^{\sharp}$$

$$\Rightarrow (g \circ f)^{*} = f^{*} \circ g^{*} \text{ in } H^{p}$$

And $id._{\sharp} = id. \Rightarrow id.^* = id.$

 $\therefore H^p: \mathcal{T}op \to \mathcal{A}bel. \ groups (\text{or} \ R - \mathcal{M}od): \text{contravariant functor}.$

4. Chain homotopy and equivalence

Let $D: \phi \simeq \psi: \mathcal{C} \to \mathcal{C}'$ be a chain homotopy, i.e., $\partial D + D\partial = \phi - \psi$

$$\cdots \to C_{p+1} \xrightarrow{\partial} C_p \xrightarrow{\partial} C_{p-1} \to \cdots \qquad \Rightarrow \qquad \cdots \leftarrow C^{p+1} \xleftarrow{} C^p \leftarrow C_{p-1} \leftarrow \cdots$$

$$\downarrow \swarrow_D \phi \downarrow \psi \swarrow_D \qquad \qquad \qquad \uparrow \qquad \stackrel{\widetilde{D}}{\widetilde{D}} \swarrow_{\widetilde{\psi}} \uparrow_{\widetilde{\phi}} \swarrow_{\widetilde{D}} \qquad \qquad \cdots \leftarrow C'^{p+1} \xrightarrow{\delta} C'_p \leftarrow C'_{p-1} \leftarrow \cdots$$

$$\cdots \to C'_{p+1} \xrightarrow{\partial} C'_p \xrightarrow{\partial} C'_{p-1} \to \cdots \qquad \cdots \leftarrow C'^{p+1} \xrightarrow{\delta} C'_p \leftarrow C'_{p-1} \leftarrow \cdots$$

$$\begin{split} & \therefore \widetilde{D} \circ \widetilde{\partial} + \widetilde{\partial} \circ \widetilde{D} = \widetilde{\phi} - \widetilde{\psi} \\ & \Rightarrow \delta \circ \widetilde{D} + \widetilde{D} \circ \delta = \widetilde{\phi} - \widetilde{\psi} \\ & \Rightarrow \widetilde{D} : \widetilde{\phi} \simeq \widetilde{\psi}, \text{ cochain homotopy.} \\ & \text{In this case, } \phi^* = \psi^*. \end{split}$$

 $\phi: \mathcal{C} \to \mathcal{C}'$, a chain homotopy equivalence $\Rightarrow \phi_*$ and ϕ^* are isomorphisms.

따름정리
$$1$$
 $f \simeq g: X \to Y \Rightarrow f_{\sharp} \simeq g_{\sharp}: S(X) \to S(Y).$ $f^* = g^*: H^*(Y) \to H^*(X)$ Similarly for pairs, $f \simeq g: (X,A) \to (Y,B),$ where $H^p(X,A;G) := H^p(S(X,A);G).$

5. Long exact sequence for pairs.

Recall

$$0 \to S(A) \to S(X) \to S(X)/S(A) = S(X,A) \to 0 : \text{s.e.s.}$$

$$\stackrel{\text{snake}}{\Longrightarrow} \cdots \to H_p(A) \to H_p(X) \to H_p(X,A) \xrightarrow{\partial_*} H_{p-1}(A) \to \cdots : \text{l.e.s. of } (X,A).$$

More generally,

$$0 \to \mathcal{C} \to \mathcal{D} \to \mathcal{E} \to 0 : \text{s.e.s.}$$

$$\stackrel{\text{snake}}{\Longrightarrow} \cdots \to H_p(\mathcal{C}) \to H_p(\mathcal{D}) \to H_p(\mathcal{E}) \stackrel{\partial_*}{\to} H_{p-1}(\mathcal{C}) \to \cdots : \text{l.e.s.}$$

If the dual sequence of a short exact sequence is short exact, then we still obtain a long exact sequence by the snake lemma. But in general,

$$0 \to A \to B \to C \to 0$$
: s.e.s.
 $\Rightarrow 0 \leftarrow A^* \leftarrow B^* \leftarrow C^* \leftarrow 0$: s.e.s.

i.e., Hom functor does not preserve short exact sequence!

Exactness of Hom functor

정리 2 (1)
$$B \xrightarrow{g} C \to 0$$
: $exact \Rightarrow Hom(B,G) \xleftarrow{\tilde{g}} Hom(C,G) \leftarrow 0$: $exact$. (2) $A \xrightarrow{f} B \xrightarrow{g} C \to 0$: $exact$ $\Rightarrow Hom(A,G) \xleftarrow{\tilde{f}} Hom(B,G) \xleftarrow{\tilde{g}} Hom(C,G) \leftarrow 0$: $exact$. (3) $0 \to A \to B \to C \to 0$: $split\ exact$. $\Rightarrow 0 \leftarrow Hom(A,G) \xleftarrow{\tilde{f}} Hom(B,G) \xleftarrow{\tilde{g}} Hom(C,G) \leftarrow 0$: $split\ exact$.

중명
$$(1)$$
 $B \xrightarrow{g} C$ Show \widetilde{g} is one to one : $\widetilde{g}(\alpha) = \alpha \circ g = 0$ $\Rightarrow \alpha = 0$ since g is onto.

(2)
$$g \circ f = 0 \Rightarrow \widetilde{f} \circ \widetilde{g} = 0$$
.
 $A \xrightarrow{f} B \xrightarrow{g} C \qquad \widetilde{f}(\beta) = \beta \circ f = 0$
 $\Rightarrow \ker \beta \supset \operatorname{im} f = \ker g \text{ and } C \cong B/\ker g$
 $\Rightarrow \beta \text{ induces } \overline{\beta} : C \to G \text{ and }$
 $\widetilde{g}(\overline{\beta}) = \overline{\beta} \circ g = \beta$

(3) Since short exact sequence splits, there exists $p: B \to A$ such that $p \circ f =$ id_A .

$$0 \longrightarrow A \xrightarrow[p]{f} B \xrightarrow{g} C \longrightarrow 0$$

 $\Rightarrow \widetilde{f} \circ \widetilde{p} = \widetilde{id} = id \Rightarrow \widetilde{f}$ is onto and Hom-sequence splits.

Remark(1)

$$0 \to \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \to \mathbb{Z}/2 \to 0$$
 exact

$$\Rightarrow$$
 0 \leftarrow Hom(\mathbb{Z}, \mathbb{Z}) $\stackrel{\widetilde{f}}{\leftarrow}$ Hom(\mathbb{Z}, \mathbb{Z}) \leftarrow Hom($\mathbb{Z}/2, \mathbb{Z}$) \leftarrow 0 exact(?)

를 살펴보면, 우선 $\mathrm{Hom}(\mathbb{Z},\mathbb{Z})\cong\mathbb{Z}$ 이고 따라서 \widetilde{f} 는 \mathbb{Z} 의 1을 2로 보내는 $\times 2$ 인 map 임을 알 수 있다. 따라서 onto가 될 수 없고, 물론 exact가 아니다.

(2) In general,

$$0 \to \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \to \mathbb{Z}/n \to 0$$

$$\Rightarrow \quad \operatorname{Hom}(\mathbb{Z},G) \overset{\times n}{\underset{\widetilde{f}}{\leftarrow}} \operatorname{Hom}(\mathbb{Z},G) \longleftarrow \operatorname{Hom}(\mathbb{Z}/n,G) \longleftarrow 0$$

a homomorphism
$$\alpha: \mathbb{Z} \to G$$

is determined by $\alpha(1) \in G$ and hence $\operatorname{Hom}(\mathbb{Z}, G) \cong G$.

$$\widetilde{f}(\alpha) = \alpha(f(1)) = \alpha(n) = n\alpha(1) \Rightarrow \widetilde{f}(\alpha) = n\alpha$$

$$\Rightarrow \operatorname{Hom}(\mathbb{Z}/n, G) \cong \ker(G \overset{\times}{\to} G)$$

 $\Rightarrow \operatorname{Hom}(\mathbb{Z}/n, G) \cong \ker (G \stackrel{\times n}{\to} G)$

만약 $G = \mathbb{Z}/m$ 이면 $\mathrm{Hom}(\mathbb{Z}/n, G)$ 는 어떻게 되는가?(Exercise) 이들로부터 우 리는 주어진 finitely generated abelian group A에 대해서 $\operatorname{Hom}(A,G)$ 를 계산 할 수 있다.

Return to long exact sequence:

우선 $S_p(X,A)$ 가 free이므로

$$0 \to S_p(A) \to S_p(X) \to S_p(X,A) \to 0$$

splits for each p, hence by the above argument,

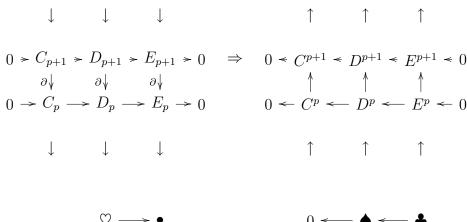
$$0 \longleftarrow S^p(A) \longleftarrow S^p(X) \longleftarrow S^p(X,A) \longleftarrow 0$$

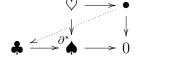
is exact(split) for each p. Applying snake lemma, we obtain

$$\cdots \twoheadleftarrow H^p(A;G) \twoheadleftarrow H^p(X;G) \twoheadleftarrow H^p(X,A;G) \underset{\delta^*}{\twoheadleftarrow} H^{p-1}(A;G) \twoheadleftarrow \cdots$$

Of course, it is also true for reduced cohomology.

Note. In the above l.e.s., the connecting homomorphism δ^* is given as follows.







Furthermore, long exact sequence is functorial.

$$\begin{array}{cccc} 0 \to \mathcal{C} \to \mathcal{D} \to \mathcal{E} \to 0 & \text{chain maps} \\ \downarrow & \downarrow & \downarrow \\ 0 \to \mathcal{C}' \to \mathcal{D}' \to \mathcal{E}' \to 0 \end{array}$$

 \Rightarrow

$$0 \leftarrow \mathcal{C}^* \leftarrow \mathcal{D}^* \leftarrow \mathcal{E}^* \leftarrow 0 \qquad \text{cochain maps}$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$0 \leftarrow \mathcal{C}'^* \leftarrow \mathcal{D}'^* \leftarrow \mathcal{E}'^* \leftarrow 0$$

 \Rightarrow Functoriality of long exact sequence follows from the earlier result. In particular, $f:(X,A)\to (Y,B)\Rightarrow f_*(f^*,\text{resp.})$ induces a homomorphism for long exact sequence of (X,A)((Y,B),resp.) to the long exact sequence of (Y,B)((X,A),resp.).

Long exact sequence of triples : $A \subset B \subset X \Rightarrow \exists$ a functorial long exact sequence,

$$\cdots \twoheadleftarrow H^p(B,A) \twoheadleftarrow H^p(X,A) \twoheadleftarrow H^p(X,B) \twoheadleftarrow_{\delta^*} H^{p-1}(B,A) \twoheadleftarrow \cdots$$

왜냐하면, 아래의 short exact sequence에서 S(X)/S(B)가 free이므로, sequence가 splits하고 위에서와 같이 dualize하고 snake lemma를 적용하면 되기 때문이다.

$$0 \to S(B)/S(A) \to S(X)/S(A) \to S(X)/S(B) \to 0$$

6.(Excision)

Let $\bar{U} \subset \mathring{A}$.

Then $i:(X-U,A-U)\hookrightarrow (X,A)$ induces an isomorphism $i^*:H^*(X,A)\to H^*(X-U,A-U).$

증명 (1st proof)

Recall $i: S^{\mathcal{U}}(X) \hookrightarrow S(X)$ is a chain homotopy equivalence, where $\mathcal{U} = \{X - U, A\}$, and hence an isomorphism on cohomology.

$$0 \to S(A) \to S^{\mathcal{U}}(X) \to S^{\mathcal{U}}(X)/S(A) \to 0$$

$$\downarrow = \qquad \qquad \downarrow i \qquad \qquad \downarrow j$$

$$0 \to S(A) \to S(X) \longrightarrow S(X)/S(A) \to 0$$

Since $S^{\mathcal{U}}(X)/S(A)$ is free, we obtain the following diagram.

$$\cdots \leftarrow H^{p}(A) \leftarrow H^{p}(S^{\mathcal{U}}(X)) \leftarrow H^{p}(S^{\mathcal{U}}(X)/S(A)) \leftarrow \cdots$$

$$= \uparrow \qquad \qquad i^{*} \uparrow^{\cong} \qquad \qquad j^{*} \uparrow$$

$$\cdots \leftarrow H^{p}(A) \leftarrow H^{p}(X) \leftarrow \cdots \qquad H^{p}(X, A) \leftarrow \cdots$$

By the 5-lemma, j^* is an isomorphism. Furthermore, $S^{\mathcal{U}}(X)/S(A) = \frac{S(X-U)+S(A)}{S(A)} \cong \frac{S(X-U)}{S(X-U)\cap S(A)} = S(X-U,A-U)$ and this completes the proof.

(2nd proof) Algebraic Mapping Cone

(1)Construction

Let $f: \mathcal{C} \to \mathcal{D}$ be a chain map. Then mapping cone $Cf = \mathcal{E}$ is defined by $E_p = D_p \bigoplus C_{p-1}$ with $\partial(d,c) = (\partial d + f(c), -\partial c)$.

check $\partial^2 = 0$:

$$\partial^2 = \begin{pmatrix} \partial & f \\ 0 & -\partial \end{pmatrix} \begin{pmatrix} \partial & f \\ 0 & -\partial \end{pmatrix} = \begin{pmatrix} \partial^2 & \partial f - f \partial \\ 0 & \partial^2 \end{pmatrix} = 0$$

Now

$$0 \to D_p \stackrel{i}{\to} E_p \stackrel{p}{\to} C_{p-1} \to 0$$

where i(d) = (d, 0) and p(d, c) = c. And

$$0 \to D_{p+1} \to D_{p+1} \bigoplus C_p \longrightarrow C_p \longrightarrow 0 \qquad \text{commutes}$$

$$\downarrow \partial \qquad \qquad \downarrow \partial = \begin{array}{c} \partial & f \\ 0 & -\partial \end{array} \quad \downarrow -\partial$$

$$0 \longrightarrow D_p \longrightarrow D_p \bigoplus C_{p-1} \to C_{p-1} \to 0$$

 \Rightarrow

$$0 \to \mathcal{D} \stackrel{i}{\to} \mathcal{E} \stackrel{p}{\to} \mathcal{C}' \to 0$$
 s.e.s. of chain complexes.

where $(C'_p, \partial) = (C_{p-1}, -\partial)$. Furthermore, by applying snake lemma,

$$\Rightarrow \cdots \to H_p(\mathcal{D}) \to H_p(\mathcal{E}) \to H_p(\mathcal{C}') \to H_{p-1}(\mathcal{D}) \to \cdots$$

$$\Rightarrow \cdots \rightarrow H_p(\mathcal{D}) \rightarrow H_p(Cf) \rightarrow H_{p-1}(\mathcal{C}) \stackrel{f_*}{\rightarrow} H_{p-1}(\mathcal{D}) \rightarrow H_{p-1}(Cf) \rightarrow \cdots$$

 $\therefore f_*: H_*(\mathcal{C}) \to H_*(\mathcal{D})$ is an isomorphism if and only if $H_*(Cf) = 0$. Similarly for cohomology also, if \mathcal{C} is free so that the above short exact sequence splits.

(2) Recall the following fact.

Let \mathcal{C} be a free chain complex. Then $H_*(\mathcal{C}) = 0$ (i.e. \mathcal{C} is acyclic) if and only if $id. \simeq 0$ (chain contractible). It easily follows from the comparison theorem.

Review of comparison theorem

$$\cdots \to X_n \stackrel{\partial}{\to} X_{n-1} \stackrel{\partial}{\to} \cdots \to X_1 \stackrel{\partial}{\to} X_0 \stackrel{\epsilon}{\to} A \to 0 \qquad \text{augmented free chain complex over } A$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

- \Rightarrow 1. γ can be lifted to a chain map $f: X \to X'$.
 - 2. Any two liftings are chain homotopic.

Let $f: \mathcal{C} \to \mathcal{D}$ be a chain map of free chain complexes. Then the followings are equivalent.

- 1. $H_*(Cf) = 0$
- $2.\ f$ is a chain homotopy equivalence.
- 3. f_* is an isomorphism.

증명 Clearly 3 implies 1 and 2 implies 3. Remains to show 1 implies 2.

$$H_*(\mathcal{E}) = 0 \Rightarrow \exists T : D_p \bigoplus C_{p-1}(=E_p) \to D_{p+1} \bigoplus C_p(=E_{p+1}) \text{ such that } \partial T + T\partial = 1.$$
Let $T_p = \begin{pmatrix} R_p & E_{p-1} \\ g_p & S_{p-1} \end{pmatrix}$, $g_p : D_p \to C_p$.
$$1 = \partial T + T\partial = \begin{pmatrix} \partial & f \\ 0 & -\partial \end{pmatrix} \begin{pmatrix} R & E \\ g & S \end{pmatrix} + \begin{pmatrix} R & E \\ g & S \end{pmatrix} \begin{pmatrix} \partial & f \\ 0 & -\partial \end{pmatrix}$$

$$= \begin{pmatrix} \partial R + fg & \partial E + fS \\ -\partial g & -\partial S \end{pmatrix} + \begin{pmatrix} R\partial & Rf + E(-\partial) \\ g\partial & gf + S(-\partial) \end{pmatrix}$$

$$\Rightarrow \partial R + fg + R\partial = 1, \quad -\partial g + g\partial = 0, \quad -\partial S + gf - S\partial = 1$$

$$\Rightarrow \begin{cases} \partial R + R\partial = 1 - fg \\ \partial g = g\partial \end{cases} \Rightarrow g \text{ is a chain map and } R \text{ is a chain homotopy} : 1 \simeq fg$$

$$\partial S + S\partial = gf - 1 \Rightarrow S : 1 \simeq gf$$

 \Rightarrow chain map g is a chain homotopy inverse of f and f is a chain homotopy equivalence.

2nd proof of excision theorem

중명 Since i_* is an isomorphism, i is a chain homotopy equivalence. Therefore, i^* is an isomorphism.

(3) **Note** Let \mathcal{C} and \mathcal{D} be free chain complexes, R be a P.I.D. and $\gamma_p: H_p(\mathcal{C}) \to H_p(\mathcal{D}), \forall p$. Then γ is induced by a chain map $(: \mathcal{C} \to \mathcal{D})$.

따름정리 3
$$H_*(\mathcal{C})\cong H_*(\mathcal{D})\Rightarrow H^*(\mathcal{C})\cong H^*(\mathcal{D})$$

증명 Let \mathcal{C} and \mathcal{C}' be free chain complexes and $\gamma_p: H_p(\mathcal{C}) \to H_p(\mathcal{C}')$ be homomorphisms, $\forall p$.

$$0 \to B_p \stackrel{j}{\to} Z_p \to H_p \to 0 \qquad \text{free}$$

$$\downarrow \exists \alpha \qquad \qquad \downarrow \exists \beta \qquad \qquad \downarrow \gamma_p$$

$$0 \to B'_p \to Z'_p \to H'_p \to 0 \qquad \text{acyclic}$$

By the comparison theorem, there exist α, β such that the above diagram commutes. We want ϕ such that the following diagram commutes.

$$0 \to Z_p \stackrel{i}{\to} C_p \stackrel{i}{\to} B_{p-1} \to 0$$

$$\downarrow^{\beta} \qquad \stackrel{i}{\downarrow^{\phi}} \qquad \downarrow^{\alpha}$$

$$0 \to Z'_p \stackrel{i}{\to} C'_p \stackrel{\partial}{\to} B'_{p-1} \to 0$$

Since B_{p-1} and B'_{p-1} are free, $C_p \cong Z_p \bigoplus D_p$ and $C'_p \cong Z'_p \bigoplus D'_p$, where $D_p = s(B_{p-1})$ and $D'_p = s'(B'_{p-1})$.

Let $\phi = \begin{pmatrix} \beta & 0 \\ 0 & \alpha \end{pmatrix}$. Then the above diagram commutes. Hence,

$$C_{p} \xrightarrow{\partial} B_{p-1} \xrightarrow{j} Z_{p-1} \xrightarrow{i} C_{p-1}$$

$$\downarrow^{\phi} \qquad \downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\phi}$$

$$C'_{p} \xrightarrow{\partial} B'_{p-1} \xrightarrow{\partial} Z'_{p-1} \xrightarrow{\partial} C'_{p-1}$$

 $\Rightarrow \phi$ is a chain map and $\phi|_Z = \beta$ certainly induces γ in the first diagram.

7.
$$H^p(\text{pt.}; G) = \begin{cases} G & \text{if } p = 0 \\ 0 & \text{if } p > 0 \end{cases}$$

증명 Recall

$$\cdots \rightarrow S_3(=\mathbb{Z}) \stackrel{0}{\rightarrow} S_2(=\mathbb{Z}) \stackrel{\cong}{\rightarrow} S_1(=\mathbb{Z}) \stackrel{0}{\rightarrow} S_0(=\mathbb{Z}) \rightarrow 0$$

 \Rightarrow

$$\cdots \leftarrow_{\cong} S^3(=G) \leftarrow_{0} S^2(=G) \leftarrow_{\cong} S^1(=G) \leftarrow_{0} S^0(=G) \leftarrow_{0} 0$$

Remark

(contravariant) functoriality property

long exact sequence for pairs with the existence of δ^* homotopy invariance excision

dimension axiom 7

⇒ Eilenberg-Steenrod axioms for (co)homology theory and unique for finite CW-pairs (Reference : Vick)

8. Let $\{X_{\alpha}\}$ be the family of path components of X. Then $H^p(X) \cong \prod H^p(X_{\alpha})$ for any coefficient G.

중명
$$S_p(X) = \bigoplus_{\alpha} S_p(X_{\alpha}), Z_p(X) = \bigoplus_{\alpha} Z_p(X_{\alpha}), B_p(X) = \bigoplus_{\alpha} B_p(X_{\alpha}) \text{ and } \operatorname{Hom}(\bigoplus_{\alpha} A_{\alpha}, B) \cong \prod_{\alpha} \operatorname{Hom}(A_{\alpha}, B)$$

9.(MV-sequence)

Same as homology case with reversed arrow of homs.

숙제 16 Check!

10.
$$\widetilde{H}^p(S^n;G)\cong \left\{ egin{array}{ll} G & \mbox{if } p=n \\ 0 & \mbox{otherwise} \end{array} \right.$$

$$H^p(D^n,\partial D^n;G)\cong \left\{ egin{array}{ll} G & \mbox{if } p=n \\ 0 & \mbox{otherwise} \end{array} \right.$$

Same MV-sequence for adjunction space, etc.

11. Let X be a CW-complex with $\mathcal{C}(X)=\{C_p(X),\partial\}$ (cellular chain complex). Then $H^p(\mathcal{C}(X);G)\cong H^p(X;G)$ 중명 See 6.(3) 따름정리 1.(R:P.I.D.)