Ext and Universal coefficient theorem

1. A: R-module (R: commutative ring with 1)

Let

$$\cdots \longrightarrow C_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} C_2 \xrightarrow{\partial} C_1 \xrightarrow{\partial} C_0 \xrightarrow{\epsilon} A \xrightarrow{\partial} 0$$

be a free resolution of A.

Define $\operatorname{Ext}^p(A,G) := H^p(\mathcal{C};G)$, the homology of

$$0 \longrightarrow C^0 \longrightarrow C^1 \longrightarrow C^2 \longrightarrow \cdots$$

where $C^i = \operatorname{Hom}_R(C_i, G)$.

<u>Check</u>: This is well-defined, i.e., independent of choice of a free resolution:

 $id:A\to A$ has a lifting and liftings are chain homotopic by comparison theorem. Therefore

$$j \circ i \simeq id, j \circ i \simeq id.$$

It follows that i is a chain homotopy equivalence and induces a cochain homotopy equivalence and hence an isomorphism

$$i^*: H^p(\mathcal{C}'; G) \xrightarrow{\cong} H^p(\mathcal{C}; G).$$

<u>Note</u>: Any such liftings i are all chain homotopic and hence induce a same homomorphism i^* and this is induced from $id: A \to A$ i.e., there exists a canonical isomorphism between $H^p(\mathcal{C}'; G)$ and $H^p(\mathcal{C}; G)$.

Properties

(1) $\operatorname{Ext}^{0}(A, G) = H^{0}(\mathcal{C}; G) = \operatorname{Hom}(A, G)$

$$0 \longrightarrow \operatorname{Hom}_{R}(A,G) \stackrel{\widetilde{\epsilon}}{\longrightarrow} \operatorname{Hom}_{R}(C_{0},G) \stackrel{\delta = \widetilde{\partial}}{\longrightarrow} \operatorname{Hom}_{R}(C_{1},G) \longrightarrow \cdots$$

is exact at $\operatorname{Hom}_R(C_0,G)$. So $\operatorname{Ext}^0(A,G)=\ker\delta=im\widetilde{\epsilon}\cong\operatorname{Hom}(A,G)$.

(2) $\operatorname{Ext}^p(F,G) = 0$, if $p \ge 1$ and F is free. A free resolution of F is

$$\cdots \longrightarrow 0 \longrightarrow F \stackrel{id}{\longrightarrow} F \longrightarrow 0$$

So if $p \ge 1$, $C_p = 0$ and

$$\operatorname{Ext}^p(F,G) = H^p(\mathcal{C};G) = 0.$$

(3) Similarly Ext $^p(A, G) = 0$ if $p \ge 2$ and A is an abelian group or a R-module with PID R.

A free resolution of A is

$$\cdots \longrightarrow 0 \longrightarrow R \longrightarrow F \xrightarrow{\epsilon} A \longrightarrow 0.$$

$$\ker \epsilon \qquad free$$

So if $p \geq 2$, $C_p = 0$ and

$$\operatorname{Ext}^p(F,G) = H^p(\mathcal{C};G) = 0.$$

In this case we simply denote $\operatorname{Ext}(A,G)$ for $\operatorname{Ext}^1(A,G)$.

(4) $\operatorname{Ext}^p(-,G)$ is a contravariant functor.

For $\gamma: A \to A'$, by comparison theorem there exist liftings $\gamma_0, \gamma_1, \cdots$ such that the following diagram commutes.

Since such liftings are unique up to chain homotopy, γ_p^* : $\operatorname{Ext}^p(A',G) =$ $H^p(\mathcal{C}';G) \to H^p(\mathcal{C};G) = \operatorname{Ext}^p(A,G)$ is well-defined and functorial property is obvious.

2. (Hom-Ext sequence)

(1) Given a short exact sequence

$$0 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 0$$

want a long exact sequence (functorial) associated to it.

idea: Find free resolutions so that the diagram,

commutes and apply snake lemma.

Start with X and Z, and then find Y. An obvious candidate is $Y = X \oplus Z$ with $\partial \oplus \partial$. Need to define ϵ at the final stage.

Since Z_0 is free, there exist $k: Z_0 \to B$ such that $jk = \epsilon$. For any $f_0: Z_0 \to A$, let

$$\epsilon(x, z) = i\epsilon(x) + f_0(z) + k(z).$$

(Write f_0 for if_0 .)

Then this is the most general form of ϵ such that the above diagram commutes. We will try to find f_0 such that the middle vertical sequence is exact.

$$\epsilon(\partial x, \partial z) = i\epsilon(\partial x) + f_0(\partial z) + k(\partial z)$$

Since $jk(\partial z) = \epsilon(\partial z) = 0$, $k(\partial z) \in i(A)$. So need $f_0 = -k$ on $\partial Z_i = ker\epsilon$. But in general, it is not possible to find such f_0 . And hence we try to change boundary operator $\partial \oplus \partial$ in one higher step.

The most general form of ∂ such that the diagram commutes will be $\begin{pmatrix} \partial & f_1 \\ 0 & \partial \end{pmatrix}$ with $f_1: Z_1 \to X_0$. Now put $f_0 = 0$ and

$$\epsilon(\partial(x,z)) = \epsilon(\partial x + f_1 z, \partial z)
= i\epsilon(\partial x + f_1 z) + k(\partial z)
= i\epsilon(f_1 z) + k(\partial z)$$

So we need to find f_1 such that $i\epsilon(f_1z) = -k(\partial z)$. But this is possible because Z_1 is free and $jk(\partial z) = 0$.

Similarly given
$$\begin{pmatrix} \partial & f_1 \\ 0 & \partial \end{pmatrix}$$
, choose $f_2: Z_2 \to X_1$ such that $0 = \partial^2 = \begin{pmatrix} \partial & f_2 \\ 0 & \partial \end{pmatrix} \begin{pmatrix} \partial & f_1 \\ 0 & \partial \end{pmatrix} = \begin{pmatrix} \partial^2 & \partial f_1 + f_2 \partial \\ 0 & \partial^2 \end{pmatrix}$.

This can be solved since Z is free and X is acyclic by the argument of comparison theorem. Inductively find $f_3, f_4, \dots f_{p+1} : Z_{p+1} \to X_p$ to construct a chain complex Y. Since H(X) = H(Z) = 0, H(Y) = 0 by snake lemma, and hence we have found the desired resolutions.

Remark. What we really obtained here is a mapping cone $Y_p = X_p \oplus Z_p$ with respect to a chain map

$$\begin{array}{c|c}
\cdots \xrightarrow{-\partial} Z_2 \xrightarrow{-\partial} Z_1 \xrightarrow{-\partial} Z_0 \xrightarrow{-\epsilon} C \longrightarrow 0 \\
f_2 \downarrow & f_1 \downarrow & k \downarrow & \parallel -id \\
\cdots \xrightarrow{\partial} X_1 \xrightarrow{\partial} X_0 \xrightarrow{i \circ \epsilon} B \xrightarrow{j} C \longrightarrow 0
\end{array}$$

(Check. Exercise)

(2) **Theorem.** If

$$0 \to A \to B \to C \to 0$$

is a short exact sequence, then there exists a natural(functorial) long exact sequence,

$$\begin{array}{rcl} 0 & \to & \operatorname{Hom}(C,G) \to \operatorname{Hom}(B,G) \to \operatorname{Hom}(A,G) \\ & \to & \operatorname{Ext}^1(C,G) \to \operatorname{Ext}^1(B,G) \to \operatorname{Ext}^1(A,G) \to \operatorname{Ext}^2(C,G) \to \cdots \end{array}$$

Proof By (1) there exist free resolutions such that

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

Taking Hom(-, G), since Z is free, we get a short exact sequence

$$0 \longleftarrow X^* \longleftarrow Y^* \longleftarrow Z^* \longleftarrow 0.$$

Applying snake lemma, we get a desired long exact sequence.

Functoriality follows from the following general consideration. Suppose we have

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

$$\downarrow^{\alpha} \qquad \downarrow^{\beta} \qquad \downarrow^{\gamma} \qquad \text{with resolutions}$$

$$0 \longrightarrow A' \longrightarrow B' \longrightarrow C' \longrightarrow 0$$

$$X', Y', Z'$$

Since the snake lemma is functorial, it is enough to show that there exist liftings such that the following diagram commutes.

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

$$\downarrow_{\widetilde{\alpha}} \qquad \downarrow_{\widetilde{\beta}} \qquad \downarrow_{\widetilde{\gamma}}$$

$$0 \longrightarrow X' \longrightarrow Y' \longrightarrow Z' \longrightarrow 0$$

Consider the diagram.

Problem: Given two liftings $\widetilde{\alpha}$, $\widetilde{\gamma}$, find a lifting $\widetilde{\beta}$ inductively such that top squares commute.

First, we can always find $\widetilde{\beta} = \begin{pmatrix} \widetilde{\alpha} & f \\ 0 & \widetilde{\gamma} \end{pmatrix}$ such that top square commutes. But

this may not be a lifting of β and modify $\widetilde{\beta}$ using f.

Consider $k = \partial \widetilde{\beta} - \beta \partial$. Then

$$jk = j(\partial \widetilde{\beta} - \beta \partial) = 0, \quad ki = (\partial \widetilde{\beta} - \beta \partial)i = 0$$

So, k induces $\bar{k}: Z \to X'_{-1}$ such that $i\bar{k}j = k$.

 $ightharpoonup^{-1}jk=0$ implies there exists $k':Y\to X'_{-1}$ such that ik'=k. And since ik'i=ki=0 and i is injective, k'i=0. So, k' induces \bar{k} .

By induction hypothesis,

$$\partial(\partial\widetilde{\beta} - \beta\partial) = 0$$

So $\partial \bar{k} = 0.2$

Since X' is acyclic and Z is free, there exists $f: Z \to X'$ such that $\bar{k} = \partial f$. Now " $\tilde{\beta}$ " = $\tilde{\beta} - ifj$ is the desired lifting of β and note that " $\tilde{\beta}$ " still commutes the top squares.

Therefore we get commutative liftings of α, β, γ and the functoriality follows from the functoriality of snake lemma.

3. (Why is the name Ext?)

Let A be an abelian group or R-module with R: P.I.D. (so that $\operatorname{Ext}^p = 0$ if $p \geq 2$).

Show
$$\operatorname{Ext}^1(A,B) \cong \operatorname{Ext}(A,B) := \{0 \to B \to E \to A \to 0\} / \sim$$
, where $\{0 \to B \to E \to A \to 0\} \sim \{0 \to B \to E' \to A \to 0\}$ if and only if

$$\begin{array}{ccc} 0 \to B \to E \to A \to 0 \\ & \downarrow = & \cong \dot{\psi} \phi & \downarrow = \\ 0 \to B \to E' \to A \to 0 \ . \end{array}$$

The existence of

$$0 \to R \stackrel{i}{\to} F \stackrel{\epsilon}{\to} A \to 0$$

implies the following long exact sequence

$$0 \to \operatorname{Hom}(A,B) \xrightarrow{\tilde{\epsilon}} \operatorname{Hom}(F,B) \xrightarrow{\tilde{i}} \operatorname{Hom}(R,B) \to \operatorname{Ext}^1(A,B) \to 0$$

Hence $\operatorname{Ext}^1(A,B) \cong \operatorname{Hom}(R,B)/\widetilde{i}(\operatorname{Hom}(F,B)) (= \operatorname{coker} \widetilde{i})$ Given an extension

$$0 \to B \to E \to A \to 0$$
,

Consider

$$0 \longrightarrow R \longrightarrow F \longrightarrow A \longrightarrow 0 \qquad \text{free}$$

$$0 \longrightarrow B \longrightarrow E \longrightarrow A \longrightarrow 0 \qquad \text{acyclic}$$

$$0 \longrightarrow B \longrightarrow E' \longrightarrow A \longrightarrow 0$$

If $E' \stackrel{k}{\sim} E$, then $k \circ \beta'$, α' are liftings of id. By the comparison theorem $\alpha \simeq \alpha'$, i.e., $\exists D : F \to B$ such that $Di(=\widetilde{i}(D)) = \alpha' - \alpha$.

²Since $\partial k = 0$, $\partial i \bar{k} j = i \partial \bar{k} j = 0$. So $\partial \bar{k} = 0$ because i is injective and j is surjective.

$$\therefore [E] \stackrel{\Phi}{\longmapsto} [\alpha] \in \operatorname{coker} \widetilde{i}, \ \forall E \in \operatorname{Ext}(A, B)$$

Show this correspondence is bijective:

Given $[\alpha]$, want an extension E such that

$$0 \to R \xrightarrow{i} F \xrightarrow{\epsilon} A \to 0$$

$$\downarrow^{\alpha} \quad \stackrel{\stackrel{:}{\downarrow}\beta}{\downarrow^{\beta}} \quad \downarrow^{=}$$

$$0 \to B \xrightarrow{p} E \xrightarrow{p} A \to 0$$

Use "push-out" of α and i to get E and β

Put $E = B \bigoplus F/N$ where $N = \{(-\alpha(r), i(r)) | r \in R\}$. (this forces $\alpha(r) = i(r)$ in E) and β,p,q are obvious maps.

Show if $\alpha \sim \alpha'$, then $E \sim E'$: If $\alpha \sim \alpha'$, then $\alpha' = \alpha + Di$ where $D: F \to B$. Let $E' = B \bigoplus F/N', N' = C'$ $\{(-\alpha'(r), i(r)|r \in R\} \text{ (of course, } -\alpha'(r) = (-\alpha - Di)(r) \}$. Then

$$0 \longrightarrow N \longrightarrow B \bigoplus F \longrightarrow E \longrightarrow 0 \qquad \text{commutes}$$

$$\cong \sqrt[4]{\gamma} \qquad \cong \sqrt[4]{\gamma} \qquad \qquad \stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{\stackrel{}}{}}}{}}}{}_{\stackrel{\stackrel{}{}}{}_{\stackrel{}}}}}{}_{\stackrel{\stackrel{\stackrel{}}{}}{}_{\stackrel{}}}}$$

$$0 \longrightarrow N' \longrightarrow B \bigoplus F \longrightarrow E' \longrightarrow 0$$

if we define $\gamma=\begin{pmatrix}1&-D\\0&1\end{pmatrix}$ and γ induces $\bar{\gamma}:E\to E'$ and $\bar{\gamma}$ is an isomorphism (by 5-lemma). Therefore $E \sim E'$.

This construction is clearly the inverse of Φ (check: Exercise).

Note The "push-out" has a universal property, i.e., when with $h \circ i = k \circ \alpha$,

Remark Similar interpretation of $\operatorname{Ext}^p(A, B)$ (See MacLane or Hilton and Stambach)

4. Universal coefficient Theorem

Let \mathcal{C} be a free chain complex and G an abelian group or R-module with R, a P.I.D. Then there exists a natural short exact sequence for all p

$$0 \to \operatorname{Ext}(H_{p-1}(\mathcal{C}), G) \to H^p(\mathcal{C}; G) \to \operatorname{Hom}(H_p(\mathcal{C}), G) \to 0$$

which splits (but not naturally).

증명

$$\cdots \to C_p \stackrel{\partial}{\to} C_{p-1} \stackrel{\partial}{\to} \cdots : \mathcal{C}$$

Consider

$$0 \to B_p \xrightarrow{i} Z_p \xrightarrow{p} H_p \longrightarrow 0 \quad \text{and} \quad$$

$$0 \to Z_p \xrightarrow{j} C_p \xrightarrow{\partial} B_{p-1} \to 0$$

Notation A' = Hom(A, G) and $\text{Ext}_p = \text{Ext}(H_p, G)$ By applying Hom-functor, we obtain

$$0 \longrightarrow H_p' \longrightarrow Z_p' \longrightarrow B_p' \longrightarrow \operatorname{Ext}_p \longrightarrow 0$$

$$0 \to B'_{p-1} \xrightarrow{\delta} C'_p \to Z'_p \longrightarrow 0$$

Note that since Z_p is free, $\operatorname{Ext}(Z_p,G)=0$. Now consider the following diagram and figure.

$$\widetilde{j}(\ker \delta) = \ker \widetilde{i} \cong H_p'$$

Naturality follows from the naturality of Hom – Ext sequence and of the above construction in the proof.

따름정리 1 Let (X, A) be a pair of spaces. Then there exists natural short exact sequence which splits

$$0 \to \operatorname{Ext}(H_{p-1}(X,A),G) \to H^p(X,A;G) \to \operatorname{Hom}(H_p(X,A),G) \to 0$$

(or as a direct sum)

Note If H_{p-1} is free, then $H^p(\mathcal{C};G)\cong \operatorname{Hom}(H_p(\mathcal{C}),G)$.(e.g. R is a field)

숙제 17 Compute $H^*(\text{closed surfaces}), H^*(\mathbb{R}P^n)$ and $H^*(\mathbb{C}P^n)(\text{See }5.)$

5. Computation of Ext

Recall Ext(free, G) = 0

정리 2 (1)
$$Ext(\bigoplus A_{\alpha},G)\cong\prod Ext(A_{\alpha},G)$$

$$Ext(A, \prod G_{\alpha}) \cong \prod Ext(A, G_{\alpha})^{\alpha}$$

(2)
$$Ext(\mathbb{Z}/n, G) \stackrel{\alpha}{\cong} G/nG$$

$$0 \to R_{\alpha} \to F_{\alpha} \to A_{\alpha} \to 0$$
 free resolution

 \Rightarrow

$$0 \to \bigoplus R_{\alpha} \to \bigoplus F_{\alpha} \to \bigoplus A_{\alpha} \to 0$$
 free resolution

 \Rightarrow

$$0 \longrightarrow \operatorname{Hom}(A_{\alpha},G) \longrightarrow \operatorname{Hom}(F_{\alpha},G) \longrightarrow \operatorname{Hom}(R_{\alpha},G) \longrightarrow \operatorname{Ext}(A_{\alpha},G) \longrightarrow 0$$

$$0 \to \operatorname{Hom}(\bigoplus A_{\alpha},G) \to \operatorname{Hom}(\bigoplus F_{\alpha},G) \to \operatorname{Hom}(\bigoplus R_{\alpha},G) \to \operatorname{Ext}(\bigoplus A_{\alpha},G) \to 0 \qquad \text{\clubsuit.}$$

Note that $\operatorname{Hom}(\bigoplus A_{\alpha}, G) = \prod \operatorname{Hom}(A_{\alpha}, G)$, etc. Now apply \prod_{α} to \clubsuit and compare with $\clubsuit\clubsuit$ to get the result.(5-lemma)

For 2nd isomorphism, similar argument using $\operatorname{Hom}(A, \prod G_{\alpha}) = \prod \operatorname{Hom}(A, G_{\alpha})$

(2)

$$0 \to \mathbb{Z} \stackrel{\times n}{\to} \mathbb{Z} \to \mathbb{Z}/n \to 0$$
 free resolution

 \Rightarrow

$$0 \to \operatorname{Hom}(\mathbb{Z}/n,G) \to \operatorname{Hom}(\mathbb{Z},G) (=G) \overset{\times n}{\to} \operatorname{Hom}(\mathbb{Z},G) (=G) \to \operatorname{Ext}(\mathbb{Z}/n,G) \to 0$$

Hence $\operatorname{Ext}(\mathbb{Z}/n, G) \cong \operatorname{coker}(\times n) = G/nG$ and $\operatorname{Hom}(\mathbb{Z}/n, G) = \ker(\times n)$.

숙제 18

$$\operatorname{Hom}(\mathbb{Z}/n,\mathbb{Z}/m) = \operatorname{Ext}(\mathbb{Z}/n,\mathbb{Z},m) = \mathbb{Z}/d$$
, where $d = (m,n)$.

6. Let X be a CW-complex.

$$[X, S^{1}] \xrightarrow{\cong} H^{1}(X, \mathbb{Z})$$

$$(a) \downarrow \cong \qquad (c) \downarrow \cong$$

$$\operatorname{Hom}(\pi_{1}X, \pi_{1}S^{1}) \xrightarrow{(b)} \operatorname{Hom}(H_{1}(X), \mathbb{Z})$$

where $[X,Y]=\operatorname{Maps}(X,Y)/\simeq=\{[f]:\operatorname{homotopy\ class}|f:X\to Y\}.$ (1) (a)를 보이기 위해 $[X,S^1]\cong[X,S^1]_*\cong\operatorname{Hom}(\pi_1X,\pi_1S^1)$ 임을 증명하자. 여기서 $[X,S^1]_*$ 는 X와 S^1 에 base point 가 정해져 있는 경우를 생각한 것이다. 그런 다음 $\operatorname{Hom}(\pi_1X,\pi_1S^1)\cong[X,S^1]_*$ 을 보이기 위해서는 X에 있는 maximal tree 를 생각하고, 이 maximal tree 를 contract 시켜 base point로 잡은 후

 $\pi_1 X$ 와 $\pi_1 S^1$ 사이의 주어진 map에 대해 대응하는 cellular map : $X \to S^1$ 을 잘 정의할 수 있다. $(\pi_1(X)$ 의 presentation을 이용하고, $\pi_i(S^1)=0, i\geq 2$ 이라 는 사실을 이용하여)

$$(2) \quad \pi_1(X) \xrightarrow{\qquad} \mathbb{Z}$$

$$H_1(X)$$

(2) $\pi_1(X)$ \longrightarrow \mathbb{Z} (b)를 보이기 위해서는 우선 $\pi_1(X)$ 를 abelize 하면 $H_1(X)$ 이 된다는 것에 주목하자. 따라서 우리는 왼쪽의 diagram을 commuta 시키는 이 되고 되고 있 mute시키는 map을 찾으면 된다.

(3) (c)는 universal coefficient thoerem에 의해서 자명하다.

숙제 19(Prove in detail)

Fact $[X, K(\pi, n)] \cong H^n(X; \pi)$

여기서 $X \in K(\pi, n) \Leftrightarrow X$ 가 $\pi_n(X) = \pi$ 이고 $k \neq n$ 일때 $\pi_k(X) = 0$ 인 space이 다. 예를 들면, $S^1 \in K(\mathbb{Z},1)$ 이다.