VII. Products

VII.1 The Künneth formulas and torsion product

Want a formula relating the homology of $X \times Y$ to the homology of X and Y.

정리 1 (The Künneth formula) R: PID. There exists a natural s.e.s

$$0 \to \bigoplus_{p=0}^{n} H_p(X) \otimes H_{n-p}(Y) \to H_n(X \times Y) \to \bigoplus_{p=0}^{n-1} Tor(H_p(X), H_{n-p-1}(Y)) \to 0$$

which splits (but not naturally).

This result will be proved in 2 stages:

- (1) The Eilenberg-Zilber theorem : There exists a natural chain homotopy equivalence between $S(X \times Y)$ and $S(X) \otimes S(Y)$.
- (2) Algebraic Künneth formula: Let C, C' be chain complexes over PID R. Suppose at least one of C and C' is a free chain complex. Then there exists a natural s.e.s

$$0 \to \bigoplus_{p=0}^{n} H_p(\mathcal{C}) \otimes H_{n-p}(\mathcal{C}') \to H_n(\mathcal{C} \otimes \mathcal{C}') \to \bigoplus_{p=0}^{n-1} Tor(H_p(\mathcal{C}), H_{n-p-1}(\mathcal{C}')) \to 0$$

which splits (but not naturally) if both C and C' are free.

Tensor product

Work in the category of R-modules(R: commutative ring with 1) and write $A \otimes B$ for $A \otimes_R B$.

- 1. (1) Let $f: A \to B$, $f': A' \to B'$ be homomorphisms. $\Rightarrow \exists !$ homomorphism $f \otimes f': A \otimes A' \to B \otimes B'$ $a \otimes a' \mapsto f(a) \otimes f'(a')$
- (2) $A \xrightarrow{f} B \xrightarrow{g} C$, $A' \xrightarrow{f'} B' \xrightarrow{g'} C'$ homomorphisms $\Rightarrow (g \circ f) \otimes (g' \circ f') = (g \otimes g') \circ (f \otimes f') : A \otimes A' \to B \otimes B' \to C \otimes C'$

(3) $f: A \to B, f': A' \to B'$: surjective

 $\Rightarrow f \otimes f'$ is surjective and $ker(f \otimes f')$ is generated by the elements of the form $a \otimes a'$ with $a \in kerf$ or $a' \in kerf'$.

중명 $f \otimes f' : A \otimes A' \to B \otimes B'$. For all $b \otimes b' \in B \otimes B'$, there exists $a \in A$, $a' \in A'$ such that f(a) = b and f'(a') = b'. Hence, $f \otimes f'$ is surjective. Let $K = \langle a \otimes a' | a \in kerf$ or $a' \in kerf' \rangle$. Clearly $K \subset kerf \otimes f'$. Consider

$$A \otimes A' \xrightarrow{f \otimes f'} B \otimes B'$$

$$A \otimes A' / K$$

and define $\varphi(b \otimes b') = (a \otimes a')$ where f(a) = b and f'(a') = b'. Then φ is well-defined since

$$a \otimes a' - a_0 \otimes a'_0 = (a - a_0) \otimes a' + a_0 \otimes (a' - a'_0) \in K$$

Therefore $ker(f \otimes f') \subset K$.

In particular, $A \xrightarrow{f} B \to 0 \Rightarrow A \otimes G \xrightarrow{f \otimes id} B \otimes G \to 0$.

2. Exactness of $\otimes G$

(1)
$$A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
: exact
 $\Rightarrow A \otimes G \xrightarrow{f \otimes id} B \otimes G \xrightarrow{g \otimes id} C \otimes G \longrightarrow 0$: exact

(2)
$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$
: split exact
 $\Rightarrow 0 \longrightarrow A \otimes G \xrightarrow{f \otimes id} B \otimes G \xrightarrow{g \otimes id} C \otimes G \longrightarrow 0$: split exact

중명 (1) 1.(3) $\Rightarrow g \otimes id$ is onto and $ker(g \otimes id) = \langle b \otimes x | b \in kerg \rangle = im(f \otimes id)$. (2) There exists p such that $p \circ f = id$. So

$$(p \otimes id) \circ (f \otimes id) = (p \circ f) \otimes id = id.$$

Therefore $f \otimes id$ is 1-1 and the sequence is split exact.

Remark
$$A \otimes R \cong A \cong R \otimes A$$

 $a \otimes r \to ra \leftarrow r \otimes a$
 $a \otimes 1 \leftarrow a \to 1 \otimes a$

e.g. $\mathbb{Z} \otimes \mathbb{Z}/2 = \mathbb{Z}/2$

$$(0 \longrightarrow \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2 \longrightarrow 0) \otimes \mathbb{Z}/2$$

$$\Rightarrow \mathbb{Z}/2 \xrightarrow{\times 2} \mathbb{Z}/2 \longrightarrow \mathbb{Z}/2 \longrightarrow 0$$

In general,

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\times n} \mathbb{Z} \longrightarrow \mathbb{Z}/n \longrightarrow 0$$

$$\stackrel{\otimes G}{\Rightarrow} \mathbb{Z} \otimes G \longrightarrow \mathbb{Z} \otimes G \longrightarrow \mathbb{Z}/n \otimes G \longrightarrow 0$$

$$\stackrel{\parallel}{\Rightarrow} G \xrightarrow{\times n} G$$

Therefore $\mathbb{Z}/n \otimes G \cong G/nG$.

Exercise. $\mathbb{Z}/n \otimes \mathbb{Z}/m = \mathbb{Z}/d$, d = (n, m)

Recall:
$$A \otimes B \cong B \otimes A$$
, $(A \otimes B) \otimes C \cong A \otimes (B \otimes C)$, $(\oplus A_{\alpha}) \otimes B \cong \oplus (A_{\alpha} \otimes B)$, $A \otimes (\oplus B_{\alpha}) \cong \oplus (A \otimes B_{\alpha})$

Use this to compute \otimes of finitely generated abelian groups or R-modules. (R: PID)

3. If G is free, then $\otimes G$ preserves s.e.s.

 $(G: \text{free} \Rightarrow G = \oplus R \text{ and }$

$$0 \to A \to B : \text{ exact} \Rightarrow 0 \to A \otimes R \to B \otimes R : \text{ exact}$$

$$A \qquad B$$

$$\Rightarrow 0 \to A \otimes G \to B \otimes G : \text{ exact}$$

4. (Homology with coefficient G)

C: a chain complex (over R), G: R-module.

$$\Rightarrow \mathcal{C} \otimes G : \cdots \xrightarrow{f} C_p \otimes G \xrightarrow{f} C_{p-1} \otimes G \xrightarrow{f} \cdots$$
 is a chain complex.

 $\Rightarrow H(C;G) := \text{homology of } C \otimes G := \text{homology of } C \text{ with coefficient } G.$

$$f: \mathcal{C} \to \mathcal{C}'$$
, a chain map $\Rightarrow f_*: H(\mathcal{C}; G) \to H(\mathcal{C}'; G)$.
 $\phi: G \to G'$, an R -module homomorphism $\Rightarrow \phi_*: H(\mathcal{C}; G) \to H(\mathcal{C}; G')$.

If $0 \to \mathcal{C} \to \mathcal{D} \to \mathcal{E} \to 0$ is a split s.e.s.(e.g. \mathcal{E} is free), by snake lemma there exists a natural l.e.s.,

$$\cdots \to H_p(\mathcal{C}; G) \to H_p(\mathcal{D}; G) \to H_p(\mathcal{E}; G) \xrightarrow{\partial} H_{p-1}(\mathcal{C}; G) \to \cdots$$

If \mathcal{C} is free and $0 \to G' \to G \to G'' \to 0$ is a s.e.s., by snake lemma there exists

a natural l.e.s.,

$$\cdots \to H_p(\mathcal{C}; G') \to H_p(\mathcal{C}; G) \to H_p(\mathcal{C}; G'') \xrightarrow{\beta_*} H_{p-1}(\mathcal{C}; G') \to \cdots$$

In this case, β_* is called Bockstein homomorphism.

Torsion product

5. Let

$$\cdots \to F_p \xrightarrow{\partial} \cdots \xrightarrow{\partial} F_1 \xrightarrow{\partial} F_0 \xrightarrow{\epsilon} A \to 0$$

be a free resolution of A.

Define
$$\operatorname{Tor}_p(A,G) := H_p(F;G) = H_p(F \otimes G)$$

= homology of $\cdots \to F_p \otimes G \to \cdots \to F_1 \otimes G \to F_0 \otimes G \to 0$.

This is well-defined by comparison theorem. (Ext^p의 경우와 마찬가지)

Note. (1) $\operatorname{Tor}_0(A,G) \cong A \otimes G$:

$$F_1 \otimes G \xrightarrow{\partial \otimes 1} F_0 \otimes G \xrightarrow{\epsilon \otimes 1} A \otimes G \longrightarrow 0$$

is exact. So $\operatorname{Tor}_0(A,G) = F_0 \otimes G/\operatorname{im}(\partial \otimes 1) = F_0 \otimes G/\operatorname{ker}(\epsilon \otimes 1) = A \otimes G$.

(2) If $p \ge 1$ and F is free, $\operatorname{Tor}_p(F,G) = 0$ and $\operatorname{Tor}_p(G,F) = 0$. A free resolution of F is

$$\cdots \longrightarrow 0 \longrightarrow F \stackrel{id}{\longrightarrow} F \longrightarrow 0$$

So if $p \ge 1$, $C_p = 0$ and

$$\operatorname{Tor}_p(F,G) = 0.$$

And since ⊗free preserves resolution,

$$\operatorname{Tor}_p(G,F)=0$$

(3) If R is a PID, $\operatorname{Tor}_p(A,G)=0$ for $p\geq 2$. A free resolution of A is

$$0 \longrightarrow R \xrightarrow{\parallel} F \xrightarrow{\epsilon} A \longrightarrow 0.$$

$$ker\epsilon \qquad free$$

So if $p \geq 2$, $C_p = 0$ and

$$\operatorname{Tor}_p(A,G) = 0.$$

In this case we simply denote Tor(A, G) or A * G for $Tor_1(A, G)$.

(4) $\operatorname{Tor}_{p}(A,G)$ is a covariant functor in both variables.

6. If

$$0 \to A \to B \to C \to 0$$

is a short exact sequence, then there exists a natural long exact sequence,

$$\cdots \to \operatorname{Tor}_n(A,G) \to \operatorname{Tor}_n(B,G) \to \operatorname{Tor}_n(C,G) \to \operatorname{Tor}_{n-1}(A,G) \to \cdots \to \operatorname{Tor}_1(C,G) \to A \otimes G \to B \otimes G \to C \otimes G \to 0$$

증명 There exist free resolutions such that

$$0 \longrightarrow X \longrightarrow Y \longrightarrow Z \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$$

And apply snake lemma. Naturality is same as before.

In particular, if R is a PID, the l.e.s becomes

$$0 \to A * G \to B * G \to C * G \to A \otimes G \to B \otimes G \to C \otimes G \to 0.$$

7.If

$$0 \to A \to B \to C \to 0$$

is a short exact sequence, then there exists a natural long exact sequence,

$$\cdots \to \operatorname{Tor}_n(G,A) \to \operatorname{Tor}_n(G,B) \to \operatorname{Tor}_n(G,C) \to \operatorname{Tor}_{n-1}(G,A) \to \cdots \to \operatorname{Tor}_1(G,C) \to G \otimes A \to G \otimes B \to G \otimes C \to 0$$

증명 $F \to G \to 0$: free resolution of G.

 $\Rightarrow 0 \to F \otimes A \to F \otimes B \to F \otimes C \to 0$: s.e.s. of chain complex.

Apply the snake lemma.

- 8. (1) $\operatorname{Tor}_n(A, B) \cong \operatorname{Tor}_n(B, A)$ for all n.
- (2) $\operatorname{Tor}_n(\bigoplus A_{\alpha}, B) \cong \bigoplus \operatorname{Tor}_n(A_{\alpha}, B).$ $(\operatorname{Tor}_n(A, \bigoplus B_{\alpha}) = \bigoplus \operatorname{Tor}_n(A, B_{\alpha}))$
- (3) $R/a * B = \operatorname{Tor}(R/a, B) \cong \ker(B \xrightarrow{\times a} B)$ and $R/a \otimes B \cong B/aB$.
- (4) $R : PID, Tor(R/a, R/b) = R/a * R/b \cong R/d, d = (a, b).$

증명 (1)

$$\cdots \rightarrow F \rightarrow B \rightarrow 0$$
: a free resolution of B

and let $K_p = ker\partial = im\partial \subset F_p$ so that

$$0 \to K_p \to F_p \xrightarrow{\partial} K_{p-1} \to 0$$
 : s.e.s.

By 7.,

$$\cdots \to \operatorname{Tor}_n(A, K_0) \to \operatorname{Tor}_n(A, F_0) \to \operatorname{Tor}_n(A, B) \to \operatorname{Tor}_{n-1}(A, K_0) \to \cdots$$

So, $\operatorname{Tor}_n(A, B) \cong \operatorname{Tor}_{n-1}(A, K_0) \cong \cdots \cong \operatorname{Tor}_1(A, K_{n-2})$. Now consider

$$0 \to \operatorname{Tor}_1(A, K_{n-2}) \to A \otimes K_{n-1} \xrightarrow{i} A \otimes F_{n-1} \to A \otimes K_{n-2} \to 0$$

Note that

$$A \otimes K_{n} \qquad A \otimes K_{n-2}$$

$$\cdots > A \otimes F_{n+1} \xrightarrow{\partial_{n+1}} A \otimes F_{n} \xrightarrow{\partial_{n}} A \otimes F_{n-1} \xrightarrow{i} \cdots$$

$$0$$

$$\operatorname{Tor}_{1}(A, K_{n-2}) = keri \cong ker\partial_{n}/ker\partial' = ker\partial_{n}/im\partial_{n+1}$$

$$= H_{n}(A \otimes F) = H_{n}(F \otimes A) = \operatorname{Tor}_{n}(B, A)$$

(2) $\operatorname{Tor}_n(A, \bigoplus B_\alpha) := H_n(F \otimes (\bigoplus B_\alpha)) = \bigoplus H_n(F \otimes B_\alpha) = \bigoplus \operatorname{Tor}_n(A, B_\alpha)$ The other follows from (1). (3) Clear from the following.

$$0 \to R \stackrel{\times a}{\to} R \to R/a \to 0$$
 free resolution of R/a

 \Rightarrow

$$0 \to R/a * B \to R \otimes B \to R/a \otimes B \to 0$$

$$\parallel B \xrightarrow{\times a} B$$

(4) 숙제 27.

$$R/a * R/b = ker(R/b \xrightarrow{\times a} R/b) = R/d, d = (a, b)$$

 $R/a \otimes R/b = coker(R/b \xrightarrow{\times a} R/b) = R/d.$