VII.2 Algebraic Kiinneth formula and Universal
Coefficient theorem for homology

Algebraic Kiinneth formula

9. (Tensor product of chain complexes)
C,C’ : chain complexes = C ® C' :chain complex :

Define (C ® C'), = éo(cp ©C,_)and 9 : (C®C), — (C®C)uy by
e

INewxd)=0cxd +(-1)Pc®dd for Vew d € C, @ C),_,

= 0% = 0: clear. (. (=1)P"10c ® O¢ + (=1)Pdc @ dc' = 0)

Want to compare H(C ® C') and H(C) @ H(C'):
We have a well-defined canonical homomorphism i : H(C)®@ H(C') — H(C®C’)
given by H,(C) ® H,_,(C') — H,(C® ().
{zte{z}={ze}
Check this is well-defined : (1) z, 2’: cycles = 2 ® 2’ is a cycle. (clear)
(2) (2400)®2 = 2@2' +(0c®2) = 2024+ 0(c®2")

10. Assume R : PID |, C : free
Show algebraic Kiinneth :

Split chain complex C into two short exact sequences as usual :
(1)0—>ZL>C3>B—>O(BP = B,_1)
(20 —=BLZ— H({C)—0

Start with tensoring (1) with C" to compute H(C @ C').

Note B C C is free and (1) is a splitting s.e.s.
H=0—-2xC Blege® B®C —0: ses.
(ie,0—=2,C, ,—C,C, ,—B,®C,_ ,—0:ses.)

. . 8=0 8=0 o =
Here we view Z as a chain complex: — Z, — Z,_; — --- and similarly for B.

Remark. f:C — C and g : D — D’ : chain map
= f®qg:CRD —C ®D : chain map
c®d f(c)® g(d)
(Oc®@d+ (—1)Pc® dd — f(Jc) ® g(d) + (—=1)Pf(c) ® g(Od)
— 9f(c) ® gld) + (~1)f(c) © Dg(d))
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Now Snake lemma = B
> H,(Z®(C)— H,(C(C")— H,(B®C)— H, 1(Z®C') —
Show H(Z ®C')=Z® H(C') and H(B®C') = B® H(C'):

o= 0=0
—>Zp — Zp—l — ..

=— (Z&(C), — 2, (Z®C)n 1 — -+ is given by

s zyec, ) T 2 g0
z@cd — (= )pz®8c
=2,8 (= Ch, 1 Oy =)
{ g g E;; } (Since Z, is free, Z,® preserves s.e.s.)
= H,(Z®(C) = pejOH(Zp ®Cl_,) = pgjozp ® H,_,(C")=(Z® H(C)),
{z® 7'} > z2® {2}

Similarly, H(B® (') = B® H(C')
(@2} = b {2}
8 (Z® H(C)), — H(C®C') — (B® H(C))n
2@ {Z} = {z®2} (=(B®@H(C))n1)

d)n 1..‘

= 0 — cokd, — H,(CRC") — kerd, 1 — 0,

where ¢, : (B® H(C')), — (Z® H(C'))n

Now, (2)= 0 — B, % Z, — H,(C) — 0 : s.e.s.
M””oﬁTMHw»mewa&®mwwwﬁ%®m¢w—»

Zp:free

H,(C) @ Hypp(C') — 0
n n—1
cLcoko, = @ Hp(C) ® H,_,(C") and ker¢,_1 = GBOTOT(HP(C), H,_,_1(C"))
: p:

0= @ H,(C)® Hy,_,(C') — Ho(C®C) — né;Tor(Hp(C), Hy oy 1(C) — 0
g

el — e
or 0 — (HC)®@H({")), — H(C®C') — (H(C)* H(C'))p—1 — 0.



Sequence splits if C and C’ are free : Since B is free,

0 7—=C B 0 = C®c¢®w—/>H(C)®H(C’)

HC)” c@cm{n(c)} @{n'()}
,where again H(C) is a trivial chain complex.
= H(C o) " HH(C) © H(C') = H(C) @ H(C)

Naturality follows as before. 0

11. Universal Coefficient Theorem for Homology

In algebraic Kiinneth, let C! = { (? ’Ztl?egwise } where G is R(PID)-mod.

G ,¢=0
0 ,¢#0
U.C.T.: IfCisfree, then 0 — H,(C)®G — H,(CRG) — Tor(H,_1(C),G) —

0 which splits (not canonical), where H,(C ® G) = H,(C; G) homology with
coefficient G.

Then H,(C') = { } and (C® ('), = C, ® G. Hence we have

Note. For a proof for splitting, see the proof of algebraic Kiinneth :

L B 0

ant Y=p-m

0 Z'
P
H(C')

but H,(C') = Z,=01if p# 0 and for p =0, Z; = Cj = Hy(C') = G.

Note 1. In particular, if C is a chain complex of free abelian group and

R, V commutative ring with 1 (so abelian group), then 0 — H,(C) ® R —

H,(C®R) — H, 1(C)* R — 0, where ® = ®, i.e., abelian group tensor prod-
Z

uct and * = z,i.e., abelian group torsion product and hence if C = S,(X) (or
Sn(X,A)), then 0 — H,(X;Z) ® R — H,(X; R) —» Tor(H,-1(X;Z),R) — 0

Note 2. A: abelian group and R : commutative ring with 1.
= A ® R has a canonical R-module structure given by r(a ® ) = a ® (rx)
R-module S, (X; R) defined earlier is exactly S,(X) ® R.



%A 28. Compute H(P";Z/2) using H(P™;Z) and compare. (Use U.C.T.)
%A 29. R: PID = x(X) = x(X;R) (Use U.C.T.)

Note 3. If R is a field, then every R-module is free. Hence H(C) ® H(C') =

H(C®CC) (or Hy(C®C(C') = GTLSOHP(C) ® H,_,(C") and H,(C) ® G = H,(C ®
p:

G) ,V vector space G.

Note (4) Let R be a field with ch(R)=0.
= H,(X;Z)Q R = H,(X;R), since R is a torsion free abelian group and
hence Tor(H,,—1(X;Z),R) = 0.

Proposition Let B be a torsion free abelian group. Then B x A = 0.
Sketch of proof

Note that any R-module is a direct limit of its finitely generated submodule.
And finitely generated torsion free is free if R is a P.I.D.(Structure theorem).
Now tensor product commutes with direct limit(easy exercise).

= * commutes with direct limit.

= Tor(C, A) = 0 if C' is a torsion free R-module with R: P.I.D.

12. Eilenberg-Zilber Theorem
S(X xY)and S(X)Q S(Y) are naturally chain homotopy equivalent.
Hence H(X xY) = H(S(X)Q S(Y)).



Proof Use Acyclic Model Theorem. Recall AMT.

Acyclic Model Theorem

Let F, F' : T — C be functors and M C Ob(7T), where C is a category of chain
complexes.

Suppose

(1) F’ is acyclic relative to M, i.e., F'(M) is acyclic VM € M.

(2) F'is free relative to M, i.e., ¥p, Jindexed family{ M, }qcs,and{is }aes,, Mo €
M. iq € Fy(M,) such that the indexed family {F(0)iq}aes, o € hom(M,, X)
is a basis for Fj,(X).

Then

(1) 3 a natural transformation 7 : F — F’ which induces a given natural
transformation 7 : Ho(F') — Ho(F").

(2) Given two such natural transformations 7,7 : F — F with 7o = 75,7 ~ 7

Eilenberg-Zilber Situation

Let 7 be the category of pairs (X,Y) of topological spaces.

Consider F : T — C,F(X,Y) = S(X xY)and F' : T — C,F(X,Y) =
S(X)Q S(Y).

= These are clearly functors :

(X,Y) — S(X xY) S(X)R S(Y)
(f9)} VE(f9)=(Fx9)s ¢F’(f,g>:fu®gu=§ofup®gunfp
(X,Y) = S(X' ' xY) S(XHYRS(Y")

Let M = {(AP, A?), p,q > 0}, where AP is a standard p-simplex.
(1) F, F" are both acyclic relative to M :
That F' is acyclic relative to M is clear since AP x A? is contractible.

Consider F.
H,(S(X)®S(Y)) = ETL%Hp(X)®Hn—p Y)@?é?)Tor(Hp(X)7Hn—p—1(Y))q]

AN X =ArY = At8ta T2 28 W H(AP) =0 = H(A9)e) 1
Ho(S(X) @ S(Y)) = Ho(X) Q@ Ho(Y) = RQ R = R °|™ n > 02 noll ts]
Me Hy(S(X) @ S(Y)) = 0]t

(2) F is free relative to M :




For each n, choose (A", A™) € M and d,, € S,,(A" x A"), where d,, : A" —

A™ x A™ is the diagonal map : t — (¢,1).

Now for each (f,g) € hom((A", A"),(X,Y)),{F(f, g)d,} form a basis for

Sp(X xY) since V)T/ can be written uniquely as 0 = (ox,0y) =
Py

Vo: A" =X xY

m | Px

X
(ox X oy) od,.

(3) F' is free relative to M :

For each n, choose (AP, AY) € M with p+q = n and i,®i, € (S(AP) Q S(A9)),
P Si(AP)Q S;(A?), where i, = id. : AP — AP,

i+j=n

For each (o,7) € hom((AP, AY), (X,Y)),

{F'(0,7)(i, ®14)} form a basis for (S(X) & S(Y)).( note that ' (o, 7)(i, ®

iq) = 03y @ Ty(ip ® ig) = 03(ip) ® Ty(ig) = 0 0ip @ T 0y = 0 ®T) since

{o @ 71lo € Sp(X), 7 € S,(Y)} form a basis for S,(X) & S,(Y) and hence

{o®@T1lo e SyX), 7€ S,(Y),p+q=n} form a basis for (S(X)Q S(Y))n.

Proof of Eilenberg-Zilber theorem

Let 7o : Ho(F)(= Ho(X x Y)) « Ho(F')(= Ho(X)& Ho(Y)) be a natural
transformation(isomorphism) determined by path components, i.e., if C,D
are path-components of X, Y, respectively, then C' x D is a path component
of X xY and Hy(C x D) & Hy(C)Q Hy(D).

AMT = 7y gives rise to a natural chain homotopy equivalence.

0
Z A 30 (29.14) Compute H(P? x S3) # H(P? x 5?) and show 7, (P? x S3) =
. (P3 x S?).

Z A 31 (29.15) Compare S? x S* and CP3. They both have same homology
but w4 are different.

(If necessary, use the following fibration and the corresponding long exact se-
quence of homotopy groups : S' — 87 — CP? = -+ — m,(S') — m(97) —
T(CP?) — m_1(S1) — -+ )

%A 32 (29.11.2) x(X x Y) = x(X)x(Y).
(Use the Poincaré series of X = fx(t) := By + (it + - - - + 3,t" and notice that
X(X) = fx(=1).)



13. Homology cross product

0= (HX)QHXY))n £ Hy(X XY) —= (HX)*H(Y))n—1 =0 {z} ® {y} t> {z} x {y}
I ~ 1
Hn(S(X) Q@ S(Y)) {z®y}

Note ¢ : S(X)Q S(Y) — S(Y)® S(X) given by ¢p(x ® y) = (—1)Ply @ x is
a natural chain map.

" 9(0(2®y)) = ¢(0r@y+(—1)Px®dy) = (—1)P V1yRdr+(—1)P(—1)P Doy
z=0(¢(x@y))-

= SAXxY)—— S xX) o T:XxY—-YxX T(zy)=(y,x)
f1¢2 f2¢2
SX)QS(Y) - S¥)® S(X)

All the maps a natural chain transformations.
By the AMT, T, ~ " f, " o o fi.
= Tu(E xn) = (=1)P(n x §),§ € Hy(X),n € Hy(Y).

14. Alexander-Whitney diagonal approximation
We can give a specific chain map( and hence a chain homotopy equivalence.)

A:S(X xY)—=S(X)QS(Y) given by Vw € S,,(X xY),w = (0,7),
Aw) = Bor, @ 7pnp € (S(X) @ S(Y))n-

p=0

(1) A is natural : only to check the commutativity of the following diagram.

Su(X x V) > (S(X) @ S(Y))n = B Sp(X) @ Suyp(Y)
(fx9) O V189:=0 fip®9in—p
Su(X % Y') 2= (S(X) @ S(Y) = @B Sp(X') @ Su—p(Y)

Just note fi(oA,) = (fio)\, =

(2) Ais a chain map, i.e., 0A = A0 :
(Proof is essentially same as the proof of derivation property of cup product.)

. Eilenberg-Zilber Theorem = A, : H,(X x Y) = H,(S(X)® S(Y))

15. Relative Kunneth formula



Kiinneth formula for (X, A) x (Y, B)

Lemma (Relative Eilenberg-Zilber Theorem)

Suppose {X x B, A x Y} : excisive couple in X x Y. Then
S(XxY)/S(XxBUAXY)~S(X)/S(A)® S(Y)/S(B) naturally.

Note that S(X xY)/S(X x BUAXY):=S((X,A) x(Y,B)),S(X)/S(A) =
S(X,A)and S(Y)/S(B) = S(Y, B). ‘

(Recall {A, B} is excisive couple if S(A) + S(B) % S(AUB).)

Proof 5

Excisive = S(X x B)+ S(AxY) = S(X x BUAXY)

= S(XXY)/(S(X xB)+S(AxY)) = S(X xY)/S(X x BUAXY) naturally.

S(A)QS(Y) - S(AxY)

N N
EZ = S(X )® S(Y) — S(X xY) naturally.
U

S(X )®5( ) = S(X x B)

S(XxY)/(S(X xB)+S5(AxY)) <« S(X)QSY)/(5(X)QS(B) +5(A4) QS(Y))
:¢ (*W%
S(X xY)/S(X x BUAXY) S(X)/S(A) ® S(Y)/S(B)

(%) follows from the general fact that(X @ Y) /(X @ B+ARY) = X/ARY/B.
Indeed 2 is induced from canonical map X xY — X/AQY/B(cf 1.(3)).

From the lemma, we have the following relative Kiinneth formula.

Let R be a P.I.D. Then

0 - (HX,AQH(Y,B)), — H,((X,A) x (Y,B)) — (H(X,A) x
H(Y,B)),-1 — 0

, a natural short exact sequence which splits.

By definition, H,((X, A) x (Y, B)) = H,(X x Y, X x BUAXY)




