Definitions.

정의 1 Let $\phi: M \to N$ be a \mathcal{C}^{∞} map.

(1) ϕ is an immersion if $d\phi_p$ is injective for $\forall p \in M$.

 $(2)(M, \phi)$ is a submanifold of N if ϕ is an injective immersion.

 $(3)\phi$ is an embedding if ϕ is an injective immersion which is also a topological embedding.

(4) ϕ is a submersion if $d\phi_p$ is surjective for $\forall p \in M$.

그림 15

예를 들어 projection map은 submersion이 된다.

Local picture

보조정리 1 $f: U(\subset \mathbb{R}^m) \to \mathbb{R}^n, C^{\infty}$ and has constant rank r on a neighborhood of $p \in U$. Then $\exists a \text{ rectangular coordinate charts } x \text{ about } p \text{ and } y \text{ about } f(p)$ such that

$$(y \circ f \circ x^{-1})(a_1, \cdots, a_m) = (\overbrace{a_1, \cdots, a_r, 0, \cdots, 0}^n).$$

중명 May assume $det(\frac{\partial f_i}{\partial u_j}) \neq 0$, $i, j = 1, \dots, r$ on U by rearranging coordinates u_i on \mathbb{R}^m and \mathbb{R}^n and by restricting U.

Define $x: U \to \mathbb{R}^m$ by $x(u) = (f_1(u), \cdots, f_r(u), u_{r+1}, \cdots, u_m)$, then

$$Dx = \begin{pmatrix} \left(\frac{\partial f_i}{\partial u_j}\right)_{r \times r} & *\\ 0 & I \end{pmatrix}_{m \times m} : nonsingular$$

By the inverse function theorem, x is a coordinate chart on a neighborhood "U" of p. Let x(p) = (a, b) and V_r, V_{m-r} as in the picture so that $V_r \times V_{m-r} \subset dom(x^{-1})$.

그림 16

 $(a,b) \stackrel{x^{-1}}{\mapsto} (h(a,b),b) \stackrel{x}{\mapsto} (f_{1,\dots,r}(h(a,b),b),b) = (a,b)$ $\Rightarrow f_{1,\dots,r}(h(a,b),b) = a \text{ (independent of } b)$ $\Rightarrow (f \circ x^{-1})(a,b) = (a, f_{r+1,\dots,n}(h(a,b),b))$ Consider

$$D(f \circ x^{-1}) = \begin{bmatrix} I & 0 \\ * & \left(\frac{\partial (f_i \circ x^{-1})}{\partial u_j}\right) \end{bmatrix}_{i=r+1,\cdots,n \text{ and } j=r+1,\cdots,m}$$

 $\begin{aligned} \operatorname{rank} \ D(f \circ x^{-1}) &= \operatorname{rank} \ Df = r \text{ at } \forall p \text{ of } U. \\ \therefore \left(\frac{\partial (f_i \circ x^{-1})}{\partial u_j}\right) &= 0 \text{ for } i = r+1, \cdots, n \text{ and } j = r+1, \cdots, m. (\text{i.e.}, \frac{\partial (f_{r+1} \cdots, n^{\circ} x^{-1})}{\partial b} = 0) \\ \therefore \ f_{r+1, \cdots, n} \circ x^{-1}(a, b) &= f_{r+1, \cdots, n}(h(a, b), b) = g(a) \text{ (i.e., independent of } b) \text{ for some } \mathcal{C}^{\infty} \text{ function } g. \end{aligned}$ Define coordinate chart $y \text{ on } V_r \times \mathbb{R}^{n-r}$ by y(a, c) = (a, c - g(a)), then $(y \circ f \circ x^{-1})(a, b) = y(a, g(a)) = (a, 0)$ and hence $(y \circ f \circ x^{-1})(a_1, \cdots, a_r, a_{r+1}, \cdots, a_m) = (a_1, \cdots, a_r, 0, \cdots, 0) \text{ on } V_r \times V_{m-r}. \end{aligned}$

따름정리 2 $\phi: M^m \to N^n$ is \mathcal{C}^{∞} , $d\phi$ has constant rank r on neighborhood of $p \in M$. Then \exists rectangular coordinate charts x about p, y about f(p) such that $(y \circ \phi \circ x^{-1})(a_1, \dots, a_m) = (a_1, \dots, a_r, 0, \dots, 0).$

따름정리 3 $\phi: M^m \to N^n$, \mathcal{C}^{∞} , is an immersion $(m \leq n)$. $\Rightarrow \forall p \in M, \exists rectangular coordinate charts x about p, y about <math>f(p)$ such that $(y \circ \phi \circ x^{-1})(a_1, \dots, a_m) = (a_1, \dots, a_m, 0, \dots, 0)$ 중명 dφ가 injective하므로 rank가 m이고 따라서 바로 위의 정리에 따르면 된다. □

따름정리 4 $\phi: M^m \to N^n, \mathcal{C}^\infty$, is a submersion $(m \ge n)$ then $\forall p \in M$, \exists rectangular coordinate charts x about p, y about f(p) such that $(y \circ \phi \circ x^{-1})(a_1, \dots, a_n, \dots, a_m) = (a_1, \dots, a_n).$

Remark. Hence an immersion is locally an inclusion and so embedding. (the local topology is the same as that of a slice)

따름정리 5 (1) $i: M^m \hookrightarrow N^n$ is a submanifold $\Leftrightarrow \forall p \in M, \exists rectangular coordinate chart (U, x) about p such that <math>x(p) = 0$, and $V = \{p \in U \mid x_{m+1}(p) = \cdots = x_n(p) = 0\}$ is a neighborhood of p in M and $(x_1|_V, \cdots, x_m|_V)$ is a coordinate chart of M.

(2) $i: M^m \hookrightarrow N^n$ is an embedding $\Leftrightarrow \forall p \in M, \exists$ rectangular coordinate chart (U, x) about p such that x(p) = 0, $V = \{p \in U \mid x_{m+1}(p) = \cdots = x_n(p) = 0\}$ is a neighborhood of p in M, $(x_1|_V, \cdots, x_m|_V)$ is a coordinate chart of M and $M \cap U = V$.

그림 17

증명 (1)의 ⇒ 는 따름정리 3에 의해 잡을 수 있는 coordinate chart들과 local inclusion map을 이용하면 되고, \leftarrow 는 *i*가 locally immersion이라는 사실로부 터 당연하다.

(2)의 ⇒를 보이자. (1)의 내용을 만족하면서 $M \cap U = V$ 를 만족하는 U가 있음을 보이면 된다. embedding은 immersion이기도 하므로 (1)의 내용을 만

족하는 U가 존재하고, 이에 대해 i(V)를 생각해보자. i는 embedding이므로 i(V)는 i(M)에서 open이다. 따라서 $i(V) = i(M) \cap U'$ (U' is open in N) 을 알 수 있고, 우리가 원하는 "U"를 "U" = $U \cap U'$ 으로 두면 된다. (rectangular coordinate를 잡으려면 다시 "U" 안에서 더 작은 p의 rectangular 근방을 잡 으면 된다.) (2)의 ሩ을 보이기 위해서는 i(open) = open in i(M) = M 임을 보이면 된 다. 그런데 $i(V) = V = M \cap U$ 에서 U가 N의 open set이므로 $M \cap U$ 는 i(M) = M에서 open이 된다. basic open set에 대해 i(basic open) = open을 만족하므로 i가 open map(onto i(M)) 임을 알 수 있다.

Remark. Corollary 3 shows the uniqueness of smooth structure on a submanifold i.e., if a subset $M \subset N$ has a topology, then there is at most one smooth structure on M such that $i: M \hookrightarrow N$ is a submanifold.

증명 두 개의 $\mathcal{F}_1, \mathcal{F}_2$ 가 $i: M \to N$ 를 submanifold로 만드는 smooth structure라고 하자. 두 structure 에 대해 i는 submanifold이므로 따름 정리5의 (1)에 따라 chart $(U_1, \phi_1), V_1, (U_2, \phi_2), V_2$ 를 잡을 수 있다. $(U_1, \phi_1) \in \mathcal{F}_1, (U_2, \phi_2) \in \mathcal{F}_2$ 일 때 $U_1 \cap U_2$ 를 생각해보자. 원래 $\phi_1, \phi_2 \in \mathcal{F}(N)$ 이므로 \mathcal{C}^{∞} 인 transition map $\phi_2 \circ \phi_1^{-1}$ 이 존재한다. 이것 을 $\phi_1(V_1)$ 에 restriction시키면 이것 역시 \mathcal{C}^{∞} 이다. 왜냐하면 우리가 구하는 $\phi_1(V_1)$ 에서 $\phi_2(V_2)$ 로 가는 transition map $\phi_2|_{V_2} \circ \phi_1|_{V_1}^{-1} \in \pi \circ \phi_2 \circ \phi_1^{-1} \circ i$ 로 표 현되기 때문이다. 따라서 $\phi_1|_{V_1}, \phi_2|_{V_2} \in \mathcal{C}^{\infty}$ -related되어 있고 $\mathcal{F}_1 = \mathcal{F}_2$ 이다. \square

명제 6 Let $\varphi: M \to N$ be \mathcal{C}^{∞} , P is a submanifold of N and $\varphi(M) \subset P$. If $\varphi: M \to P$ is continuous, then φ is \mathcal{C}^{∞} .

★제 5. 위 명제를 증명하라.

위 명제에서 연속성이 필요한 이유를 다음과 같은 예에서도 볼 수 있다.

4

 $N = \mathbb{R}^2, M = (-1, 1)$ 이고 $P \stackrel{\text{def}}{=}$ figure eight으로 보면 이 때 $i: M \to N \stackrel{\text{ce}}{=} \mathcal{C}^{\infty}$ 이나 $M \to P$ 로 가는 map은 불연속이다.