Manifold with Boundary

정의 1 A topological manifold of dimension n with boundary

is a space M with the property that $\forall p \in M, \exists$ a coordinate chart (U, ϕ) of ps.t. ϕ is a homeo onto an open set of $(\mathbb{R}^n \text{ or}) \mathbb{H}^n$, where $\mathbb{H}^n = \{x = (x_1, \cdots, x_n) \in \mathbb{R} \mid x_1 \leq 0\}$

$$\begin{split} M & \text{ boundary} \\ \hline \\ \Rightarrow \\ \partial M &= \{ p \in M \mid \phi(p) \in \{ 0 \} \times \mathbb{R}^{n-1} =: \partial \mathbb{H}^n \} \end{split}$$

그림. Manifold with Boundary

Remark (invariance of domain)

In \mathbb{R}^n , 1-1 continuous image of open set is open.

위 Remark에 따르면, coordinate transition map은 interior point를 interior point로 boundary point는 boundary point로 보내므로, ∂M 은 coordinate chart의 선택에 관계없이 잘 정의된다.

A *smooth structure* on a manifold with boundary is defined exactly same as before.

(note. a map defined on an open subset of \mathbb{H}^n is smooth if it can be extended to a smooth map on an open set of \mathbb{R}^n)

• M : *n*-dimensional C^{∞} manifold with boundary

 $\Rightarrow \partial M$: (n-1)-dimensional C^{∞} manifold without boundary