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Introduction

Let M? be a compact oriented Riemannian manifold of dimension 3. Consider
the operator A on even forms on M, Q°+ Q2?, defined on Q°” (p=0,1) by

A=(—1)(xd —d¥*).

The eigenvalues {1} of A are all real and can be either positive or negative. In
[1], Atiyah, Patodi and Singer have defined

nis)= 3, (sign )2/~
A0
In [1] it is proved that 5(s) has a meromorphic continuation to the entire
complex plane and does not have a pole at zero. It follows that #(0) is well-
defined. This value is the y-invariant (M) of M.

Theorem (Atiyah-Patodi-Singer [17]). Let W be a 4-dimensional compact oriented
Riemannian manifold with boundary M and assume that, near M, it is isometric
to a product. Then

n(M)

il

1 | B —Sign(W),
w

where Sign(W) is the signature of the non-degenerate quadratic form defined by
the cup product on the image H*(W,M) in H*(W) and F, is the first Pontrjagin
form of the Riemannian metric.

In this paper, we use the formula in the above theorem to study n(M) for
hyperbolic 3-manifolds and calculate the right-hand side of the formula ex-
plicitly, in a special case. Our main task is to represent the integral of F by
some more tractible ones.

In Sect. 1, we deal with general compact oriented Riemannian manifolds M
of dimension 3. Let F(M) be the SO(3) oriented frame bundle of M. Let L be a

*  Dedicated to Professor M. Nakaoka on his sixtieth birthday
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link in M. Let o be an orthonormal framing on M such that at each point of L
the first vector of « is tangent to L. Let &% be an orthonormal framing defined
on M —L which has a special singularity at L (see Sect. 1, this notion is due to
Meyerhoff [10]). We define the torsion number of o along L, 7(L,«), and the
difference degree, d(#, «). The former is a real number and the latter an integer.
Let Q be the Chern-Simons form on F(M) of the Riemannian metric. Let s: M
—L— F(M) be the section defined by #. Then the integral | Q is defined.

s(M—L
Finally let 6(M,«) be the Hirzebruch invariant of the framed( 3-m)anif01d (M, )
defined by §(M,«)=4 B [W]—Sign(W), where W is a compact oriented 4-ma-
nifold with boundary M and B [W] is the relative Pontrjagin number of W
with respect to the framing o [9].
Using these notions, we prove in Sect. 1,

Theorem 1. Let M be a compact oriented Riemannian manifold of dimension 3.
Let L be a link in M. Let o be an orthonormal framing on M such that, at each
point of L, the first vector of it is tangent to L. Let % be an orthonormal
framing on M — L having a special singularity at L. Then

1
(M=% | Q—g (L ,0) +3d(F, 0)+0(M, ).

s(M L)

The precise definitions of all the terms in the right hand side of the above
equation will be given in Sect. 1. We note that the last two terms in the equa-
tion have nothing to do with the metric.

From Sect.2 on, we restrict our attention to hyperbolic 3-manifolds. Our
method is as follows. Fix an oriented complete hyperbolic 3-manifold N of
finite volume with h cusps (h=1). By Thurston [14], deforming suitably the
hyperbolic structure on N and completing it, we obtain a family of infinitely
many closed hyperbolic 3-manifolds {M} (hyperbolic Dehn surgery). Topologi-
cally each M is obtained from N by attaching h solid tori to the h ends of N,
and the corresponding h core curves of the solid tori are short simple geodesic
loops in M and form a link y in M. We want to apply Theorem 1 to the #-
invariant of M. At first we must choose a link L in M and a framing & on M
— L having a special singularity at L. It would seem natural to set L=y. Un-
fortunately in general, M —y does not admit such a framing. However adding
some extra loops m={Jm, to y and setting L=y um, we can construct such a
framing # on M — L. Then choosing a suitable framing « on M we can apply
Theorem 1 to n(M). As noted before, the last two terms of the equation in
Theorem 1 are purely topological and may be calculated by the functorial
method (see Sect. 5, for example). The calculation of t(L,a) is local and com-
paratively easy. Whatis | Q?

s(M-—L)
In Sects. 3 and 4, we study this integral. M —y is N with deformed hyper-

bolic structure, M—L=N-mand [ Q= [ Q. We show that the link m
s(M—L) s(N—m)

in N can be chosen independently of M (Proposition 3.1, Sect. 3). Let U be the

deformation space of the hyperbolic structure on N. For ueU, we denote the

corresponding hyperbolic manifold by N,. If we choose a framing & on N,—m,
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the integral | Q is defined, where s: N,—m— F(N,) is the section defined
S(Ny—m)

by #,. We choose a family of framings {%},., such that % varies in a good

manner on a neighborhood of the end of N when u varies through U, each Z,

has a special singularity at m and | Q defines a real-valued smooth func-
S(Ny—m
tion on U. Here ‘a good manner’ Ir;eans)the following: if N, can be completed
to a closed hyperbolic 3-manifold M, by adjoining # geodesic loops 7y to the
end of N,, then the framing & on N,—m=M_, —(yum) has a special singularity
at L=yum.
The deformation space U has a natural complex structure (Sect. 2 for a brief

summary). We express the function | @ on U as the imaginary part of
s(Ny—m
some analytic function f(u) on U. The(re is )a bi-invariant closed analytic differ-
ential form C of degree 3 on the complex Lie group PSL,(C) such that the
imaginary part of C is the Chern-Simons form @ (regarding PSL,(C) as the
SO(3) frame bundle of hyperbolic 3-space H?®) and the real part of C is the
volume form plus an exact form up to scalar multiplication (Def. 3.1., Sect. 3).
Using a developing map of N, into H?, C can be pulled back to F(N,), and the

integral [ C is defined and its imaginary part is | Q. For a technical
S(Ny—m) S(Ny—m)

reason, to define f(u), we must subtract from the integral of C a term arising

from the extra link m, and we obtain a complex-valued function f(u) on U

whose imaginary part contains | Q (Def. 3.2, Sect.3). The analyticity of
S(Ny—m)
f(u) is stated in Theorem 3.1 in Sect. 3 and proved in Sect. 4.
Taking the exponential of 27 f(u), F(u)=exp(2nf(u)), and calculating it, we
prove the following in Sect. 3,

Theorem 2. Let N be an oriented complete hyperbolic 3-manifold of finite volume
with h cusps. Let U be the deformation space of the hyperbolic structure on N.
Let u® be the point of U representing the original complete hyperbolic structure
on N. Then there is a complex analytic function F(u) on a neighborhood V of u°
in U such that if ueV represents the hyperbolic manifold N, which can be com-
pleted to a closed hyperbolic manifold M, by adjoining h geodesic loops y=)y,
to the h ends of N,, then

|F(u)|=exp( vol(M )+ 2, length(yl))

arg F(u)=4n CS(M )+ Z,; torsion(y;))mod2n Z,

where vol(M,) is the volume of M,, CS(M ) is the Chern-Simons invariant of M,
and torsion (y,) is the torsion of the geodesic loop y, (Def. 1.2, Sect. 1).

The above theorem was conjectured in [13].

In Sect. 5, using the results in the preceeding sections, we calculate the y-
invariant of the hyperbolic manifold M, , obtained by performing Dehn sur-
gery of type (p,q) along the figure-eight knot K in §3 By [14], N=5%~K has
a complete hyperbolic structure of finite volume with one cusp, and the points
of the deformation space of the hyperbolic structure on N are parametrized by
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pairs (z,w) of complex numbers in the upper half plane satisfying the equation
log z+log(l —z)+logw+log(l —w)=0, (0
where log is taken with —n<arg<m.
In addition, if u=(z, w) satisfies the following equation for a coprime pair of
integers (p,q),
plogw(l —z)+qlogz*(1 —2)*=2n7i, (1D

then the corresponding hyperbolic manifold N, can be completed to a closed
hyperbolic manifold M, , and for each coprime pair of integers (p,q) such that
Ipl=5 if |g| =1, there is such a pair (z,w) ([14], §4).

We prove the following in Sect. 5.

Theorem 3. Let M, , be the hyperbolic manifold obtained by performing Dehn
surgery of type (p,q) along the figure-eight knot in S*, where (p,q) is a coprime
pair of integers such that |p|=5 if |q|=1. Let (z,w) be the pair of complex num-
bers in the upper half plane satisfying (1) and (I1) in the above. Then,

2

1 1
10,0~ —5 75 Re (RE)+ R~ ) +5 -arga(1 =)

+Ldefg )+ L
p 3p

where
(i) R(x) is the function on the upper half plane defined by

R(x)=%logxlog(l —x)— [ log(l —t)dlogt
[v]

and

=tk k
(ii) def(p;q,1)=— )’ cot;ncotl—)qn is the Hirzebruch defect [7].

k=1
If |p| or |q| increases to + oo, then (z,w) converges to (e™/3, ¢™/3) and the
terms except the last two terms of the right-hand side of the above equation
converge to zero. Hence, if p is fixed and |q| is sufficiently large, then n(M, ) is

1
nearly equal to a(p,q)=;def(p;q,1)+i. By definition, def(p;q,1) depends
3p

only on gmodp and I—tdef(p'q, )=—~—(q+r)m0d Z, where qr=lmodp
Hence a(p,q)= —gmod sZ. If g+¢q modp, it follows |a(p,q)— a(p,q)|>—~ If

g=¢modp and g¢=¢’, then def(p;q,1)=def(p;q,1) and we have Ia(p, q)
—a(p,q)l 2}
Corollary 1. If p is fixed, then n(M, )+n(M, ) for q+q and |ql, |¢'|>0. In
particular, for q+q' >0, n,(M, ) is not isomorphic to n, (M, ,).

The last statement of the above corollary follows from the rigidity theorem of
Mostow {12].
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If a closed hyperbolic manifold admits a self-homotopy equivalence of de-
gree —1, then it admits an orientation-reversing isometry [12]. This implies
that its n-invariant vanishes [1].

Corollary 2. If p is fixed, then for all sufficiently large q, M
homotopy equivalence of degree —1.

p.q @dmits no self-

1. A splitting of the n-invariant of 3-dimensional Riemannian manifolds

In this section, we consider a general 3-dimensional compact oriented Rieman-
nian manifold M with Riemannian metric g. Let F(M) be its SO(3) oriented
frame bundle. Let (0)) and (0;;) be the fundamental form and the connection
form respectively of the Riemannian connection on F(M), that is, (6;) is a
matrix of l-forms on F(M) such that 0;;= -0, and df,=—-20,;A0; (i,
=1,2,3). If o is an orthonormal framing defined on a subset A in M, it defines
the section s: B> F(M) for each subset Bc 4. Let L be a link in M, that is, L
=L,u...uL, is a finite union of smoothly embedded disjoint circles L,,...,L,
in M.

Definition 1.1. Let a=(¢,,2,,¢,) be an orthonormal framing defined on a subset
of M containing L. Assume that 2,(y) is tangent to L at each yeL. Then the
torsion number of « along L, 1(L, ), is defined by

t(Lya)=— | 0,3,
s(L)

where s: L » F(M) is the section defined by « and the orientation of L is given
by e,. Clearly

-

t(L,a)= ) t(L;®).

i=1

1

—t =t =

Lemma 1.1. Let a=(g,,2,,¢;) and o« =(e},€,,23) be two orthonormal framings on
a subset of M containing L such that e,(y) and € (y) are tangent to L at each

yeL. Then,
(L) —1(L,oYe2n Z,

where Z denotes the ring of rational integers.
Proof. It suffices to show the lemma in the case that L is a simple closed curve
in M. By assumption, for each yeL,
e (y)=ve (y,
&, (n)=v(cos v(y) g, (y)+v(sin v(y) 25(y),
e5(y)= —(sinv(y) 2, (y) +(cos v(y) 2(»),
where v=+1 and v: L-R/2#Z is a smooth map. Let s and s’ be the sections

L F(M) defined by « and o respectively. Then s'*8,,=5*0,, —vdv and

[s*0,,={s*0,5—v [dv.
L L L
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In the right hand side L is oriented by €. Hence,

t(L,o)=1(L,a)+v [ dv.
L

Since [dv is an integral multiple of 2, the lemma follows. q.e.d.
L

Definition 1.2. The torsion of a link L in M, torsion (L), is defined by
torsion (L)=1(L,¢)mod 2 Z,

where « is an orthonormal framing defined on a subset of M containing L
satisfying the condition of Definition 1.1.

Let d: M x M —R be the distance function on M induced by the Rieman-
nian metric. For a link L in M, set N,(L)={xeM|d(x,L)<¢}, where ¢>0 and
d(x, L)y=inf{d(x, y)|yeL}. For a sufficiently small ¢>0, N,(L) is diffeomorphic
to L x D?, where D? is the 2-disc, and each xeN,(L) can be joined to a unique
point yeL by a unique geodesic y(x,y) in N,(L) such that d(x,y)=d(x,L)=
length (y(x, )). Moreover for each yeL, S;(y)={xeN,(L)|d(x, L)=d(x,y)=05<¢}
is a smooth circle in N,(L).

The following notion is due to Meyerhoff [10].

Definition 1.3. Let L be a link in M. Let # =(e,e,,e;) be an orthonormal
framing defined on M — L. Assume that % satisfies the following properties in
N,(L) for a sufficiently small ¢>0: For each xeN,(L)—L, taking yeL as above,

(i) e;(x) is tangent to y(x,y) and it has the direction opposite to y, and

(i) e,(x) is tangent to S;(y), here d(x, y)=0. Then we say that # has a spe-
cial singularity at L.

Note that e, has the direction along L in N,(L)—L. # looks like this near
L.

Fig. 1

Lemma 1.2. Let & be an orthonormal framing on M — L having a special singu-
larity at L. Let s: M —L— F(M) be the section defined by #. Set M =the closure
of s(M—L) in F(M). Then M is a 3-dimensional compact manifold with boundary
OM. 0M is diffeomorphic to S x L and it is mapped onto L by the bundle pro-
jection F(M)— M. Moreover & extends uniquely in a smooth manner to a fram-
ing # on M, where we identify M —L with s(M —L).

Proof. Let a=(e,,¢,,¢,) be an orthonormal framing defined on a subset of M
containing L such that &(y) is tangent to L at each yeL and it has the same
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direction as e; of & near y. Then S(y)=Ilim,_,s(S;(y)) is a smooth circle in
F(M) represented by the rotation of the framing a(y)=(e,(»),¢,(y), e;3(y)) about
2,(y). We have 0M = ) S(y) and identifying the 1-sphere S* with R/2nZ, we

define a map ¥: S' xfiaﬂ by
Y (v, y)=( (), (cos v) e,(y) —(sin v) €5(y), (sin v) &,(y) + (cos v) 25(»)),

for 0<v <2 and yeL, where the right hand side represents a framing at y,
hence a point of F(M). Then  is a diffeomorphism. Since e,(x) - 6/0v as x—y
for xeL and yeL, # extends naturally to a framing & which is given on M
by

e, =the parallel lifts of the unit tangent vectors of L,
e,=0/0v,
e, =inward normal vectors at M in M. q.ed.

In the rest of this section, we fix a link L in M and an orthonormal framing
F =(e,,e,,e;) on M —L having a special singularity at L.

Let o=(e,,#,,€;) be an orthonormal framing on M. We assume that « sat-
isfies the following condition, (*) for each point yeL, €,(y) is tangent to L and
it has the same direction with e, of & near y.

Any framing on M can be deformed by homotopy so that it satisfies ().
We note that the latter condition about the direction of e, is technical and not
essential.

Let W be a 4-dimensional compact oriented Riemannian manifold with
boundary M. We assume that W is isometric to a product M x [0,1] near M,
where M =M x0. We set Wy=W —M x[0,1). Let F(W) be the SO(4) oriented
frame bundle of W, and let p: F(W)— W be the bundle projection. We calculate
the integral of the first Pontrjagin form by using a suitable connection ¢ on
F(W) instead of the Riemannian connection on it. The connection c¢ is defined
as follows. Let ¢, be the Riemannian connection on F(M). Let ¢, be the con-
nection on F(M) defined by the framing o. Let u(f) be a smooth monotone
increasing function defined on [0, 1] such that u(t)=0 (0=<:<1/3) and u()=1
(2/3<t<1). For te[0,1], let ¢, be the connection on F(M) defined by ¢, =(1
—u{t)) c,+ult)c,, where + is taken in the convex linear space of all the
smooth connections on F(M). Then ¢,=c, and ¢, =¢,. Let ¢ be the connection
on F(M x [0,1]) such that c=c, on F(M xt) and c is trivial in the direction of
t. Extend ¢ to a smooth connection on F(W) in an arbitrary way on F(W,) and
we get a smooth connection ¢ on F(W).

Let P be the first Pontrjagin form of the connection c. Then,

f[R= | R+ [R.

w M x[0,11 Wo
At first we consider [ B. The framing o induces a map h: W— BSO(4) such

L4
that h(M)= a poin‘s and h classifies the tangent bundle of W. Let
[R1eH*(BSO(4),Z) be the universal first Pontrjagin class. Then the relative
Pontrjagin number with respect to o is defined as the evaluation (h*[H],
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[W1), where [W] denotes the orientation class of H,(W,M,Z) and h*:
H*(BSO(4),Z) - H*(W,M,Z) is the map induced by h. We denote this number
by F [W]. The following lemma is a standard fact from the theory of charac-
teristic classes.

Lemma13. | E=R[W].
Wo

Next we consider | B. The framing % =(e,e,,e;) on M —L and the
M x[0,1]
unit tangent vector 0/0t of [0,1] define the orthonormal framing

(e;.€5,€5,0/0t) on (M—L)x[0,1], and it defines the section s: (M —L)
x[0,1]—> F(M —L)x[0,17). Let X be the closure of the image s(M —L)
x[0,1]) in F(M —L)x[0,1]). As in Lemma 1.2, X is a 4-manifold with bound-
ary and is diffeomorphic to M x [0, 1], where M is the 3-manifold defined in
the lemma. The pull back of the first Pontrjagin form B, p* B, is an exact form
and by the Chern-Simons theory [5], there is a differential form of degree 3,
Q¢ on F(W) such that p*B =dQ° and Q° is defined canonically by the con-
nection ¢. The explicit form of Q¢ on F(M x[0,1]) is as follows. Let (65 and
(€% be the connection form and the curvature form respectively of the con-

4
nection ¢ (i,j=1,2,3,4). Then d;;= — ) 05 A0;;+ ;. Since {3/0t} is a paral-
k=1

lel vector field on M x[0,1] with respect to ¢, 65,(6/0t)=0 on X=M
x[0,1](1 <i<4). Hence on X, we have

1
Qc=4—n_z(9i2/‘ 013 A 053+ 01, A QT+ 073 A Q13+ 053 A Q33)

(see [5], §6).
By Stokes’s theorem,

R={p*R=-]dg~ [ 0"
M x[0,1] X X 254
The boundary of X, 6X=0(M x[0,1]), consists of three parts, M x0, M x 1
and OM x [0,1]. We consider the integral of Q¢ on the three parts separately.

M [ ¢

Mx0

Let (0;;) and (£2;;) be the connection form and the curvature form respec-
tively of the Riemannian connection on F(M) as before. The Chern-Simons
form Q on F(M) is defined by

1
Q:W(QIZ AN 3+ 01, AQ+03AQ 540,58 02,3).

The connection c¢ is the product connection of the Riemannian connection c,
on F(M) with the trivial connection in the direction of [0,1] near M x 0. It
follows that
f o= | ¢
Mx0 s(M—1L)
where s: M —L— F(M) is the section defined by %
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(ii) J -
Mx1

The restriction of o to M —L extends uniquely in a smooth manner to a
framing & on M, where we identify M —L with s(M —L) (s is the section de-
fined by &), such that &|@M is the parallel lift of a|L. On M, there are two
orthonormal framings &=(g,,e,,¢;) and Z =(e,,e,,e;) which is defined in
Lemma 1.2. Since « satisfies the condition (x), 2, =e, on M. Define the differ-
ence map f: M —S0(3) by

(e,(x), €5(x), e3(x)) = (2,(x), 2,(x), 23 (x)) f (x)

for xeM. Then f(0M)eSO(2). Hence f induces the homomorphism f,:
H,(M,0M,Z)— H,(SO(3), SO(22),Z). Let [M] be the orientation class in
H,(M,0M,Z)=2Z. Let [SO(3)] be the orientation class in H,(SO(3),Z)
=H,(SO(3), SO(2), Z)=1Z, where SO(3) is canonically oriented.

Definition 1.4. The difference degree, d(%0), is defined by f,[M]
=d(#,0)[SO(3)].

Lemmal4. | Q°=2d(#, ).

Mx1
Proof. On a neighborhood of M x 1, the connection ¢ is the product of the
connection ¢, with the trivial connection in the direction of [0,1]. Since ¢, is
flat, its curvature forms vanish, and the connection form of ¢, is given by the
skew symmetric matrix of 1-forms (f(x)~ ' df(x)) for xeM, where df is the dif-
ferential of f and (f(x)~'df(x)) is considered as an element of the Lie algebra

1
of SO(3). It follows that, on M x 1, Q= yp — 00, A0{3 A 055 is equal to f*(—2w),

where  is the normalized invariant measure on SO(3). Since M x 1 is M with
opposite orientation, it follows

§ o= ff* w)=d(Fa) | 20=24(Fq). qed.
Mx1 SO(3)
@i [ o

oM x[0,1]

Lemmals. | Q= —-LT( L,a).

oM x[0,1]

Proof. Define a diffeomorphism : S! x L x [0,1]—dM x [0,1] by
Y (v, y,t)=(2,(y).(cos v) 2, (y) —(sin v) 2;(y), (sin v) 2, (y) +(cos v) 23 (), )

where veS'=R/2nZ, yel, te[0,1] and a(y)=(2,(y),€,(y),25(y)). The orien-
tation of M x[0,1] is given by (e,,e,,e;,0/0t), where F =(e,,e,,e;). Since
e;(x) is an inward normal vector at each xedM x [0, 1], the orientation of S
x L. x [0,1] is given by (J/0v,e,,3/0t), where e, is the unit tangent vector of L.
{¥, 0/0v} is a vertical vector field and e, is parallel along the integral curves
of that vector field. Hence (y*€)(0/0v,*)=0 (i,j=1,2,3) and (y*67,)(d/00)
=({y* 0{5)(0/0v)=0. Moreover by defmmon W*05;)(@/0v)=1. Let g: S'xL
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x[0,1]1-L x[0,1] be the projection onto the last two factors. Then g=p,
where Y: S'x Lx[0,1]->0M x[0,1]<F(M x[0,1]) and p: F(M x[0,1])—» M
x [0,1] is the bundle projection. Let s: L x [0,1]— F(M x [0,1]) be the section
defined by the framing (¢,,¢,,e,,0/0t), where a=(2,,2,,¢,;). Then from the
above facts, we have

1
‘/’*chm‘//*(gcxz AOT3 A 055 +053 A Q55)

1
=4—nz Y*(055 A d053)

and
Yr 05, =dv+q* s* 65;.

1
It follows that y* chmdv/\d(q* 5*05;). From the above orientation con-
vention, by partial integration along §* and Stokes’s theorem, we have

O N

oM x[0,1] SIxLx{0,1]

! § dvnad(g*s*65;)

=12
4n® g x L x [0,1]

1
= [ d(s*655)

_2_TEL><[O,1]
=L( f s*¥0%, — f s*65,).
27 Lo 2 Lx1 23

Since the connection ¢ is ¢, on F(M x0) and ¢, on F(M x 1), we have s* 05,
=s5%0,, on Lx0 and s*05;=0 on Lx1. Hence the last expression of the

1
above integral equals to o |s*0,,=—=—1(L,0) by definition. q.ed.
L

2n
The calculations in the above proof will be frequently used in the sub-
sequent sections, and we will omit the details of such calculations.
From (i), (ii) and (iii) in the above, we have

Theorem 1.1. Let M be a 3-dimensional compact oriented Riemannian manifold.
Let L be a link in M. Let & be an orthonormal framing on M —L having a
special singularity at L. Let o be an orthonormal framing on M satisfying (*). Let
W be a 4-dimensional compact oriented Riemannian manifold with boundary M,
and assume that it is isometric to a product near M. Then

[R= [ Q- tla)+2d(Fa)+ RIW],

w s(M—L)

where s: M —L-> F(M) is the section defined by %.
Since d(#,0) and B [W] are integers and { EmodZ is an invariant of M,
w

we obtain from Lemma 1.1 and Definition 1.2:
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Corollary 1.1. In the situation in Theorem 1.1,

0] —1— torsion (Lymod Z
2n

s(M—L)
is an invariant of M.

This corollary is proved in [10] by a different method.
From Theorem 1.1, we obtain immediately Theorem | in the Introduction.

2. The deformation space of hyperbolic structure

We give a very brief account: see [13] and [14].

We use the upper half space model of hyperbolic 3-space, H> = {(c,t)|ceC
and t>0} with metric ds?=t¢"2(|dc|?+dt?), which is bounded by the extended
complex plane € U co. If we write the points of H® in quaternion form g=c¢
+1j, the orientation-preserving isometries of H*> are complex M&bius transfor-
mations g—(xg+ B)(yg+3)~!, where 5 —By=1 and the computation is car-
ried out within the algebra of quaternions. The group of orientation-preserving
isometries may be identified with PSL,(€)=SL,(C)/{+1d}. The action of
PSL,(C) on H? is transitive and the isotropy subgroup of the point (0,1)e H?® is
SO(3), its maximal compact subgroup. The correspondence g—g(0,1) for
gePSL,(C) induces a diffeomorphism PSL,(C)/SO(3)— H?, and the natural
projection, PSL,(C)— H? is considered as the SO(3) oriented frame bundle of
H?. Thus PSL,(C)=F(H?).

Let N be a complete hyperbolic 3-manifold of finite volume with A cusps
(h=1). There is a holonomy representation, p: I'=n,(N, x°%) - PSL,(C) (x°eN),
which is unique up to equivalence, and N is identified with the quotient space
p(I\H?. Corresponding to the h cusps, N has h ends {¢},_, _, each of which
is diffeomorphic to T? x (0, co), where T2 denotes the 2-torus.

An ideal tetrahedron 4 in H® is a geodesic tetrahedron with all vertices at
infinity=0H?>. An ideal tetrahedron is described (up to isometry) by a single
complex number z in the upper half plane such that the euclidean triangle cut
out of any vertex of A4 by a horosphere section is similar to the triangle with
vertices 0, 1 and z. We write 4= A4(z). The numbers z, 1 —1/z and 1/1 —z give
the same tetrahedron: to specify z uniquely, we must pick an edge of A (the
dihedral angle at this edge will be arg(z)).

We assume that N is decomposed into a finite union of ideal tetrahedra
A u...uA,, where the vertices of each 4, are deleted. For each 4; (i=1,...,n),
we make a choice of an edge of 4, and write 4,=4,(z?). Then to each edge of
4, is associated one of the three numbers z, 1 —1/z2, 1/1 —z? the modulus of
the edge. We write

N=4(z)u...ua(z0).
Any hyperbolic 3-manifold is obtainable from an ideally triangulated one by

Dehn surgeries on some cusps. Hence by the above assumption on N, we do
not lose any generality in subsequent arguments.
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If we replace u=(z%,...,2%) by u=(z,,...,z,) (imz,>0, i=1,...,n), we obtain
a complex N,=A(z,)u... v 4(z,) with the same gluing pattern as N. The neces-
sary and sufficient condition that N, gives a smooth (not necessarily complete)
hyperbolic manifold is that at each edge e of N, the tetrahedra 4, abutting e
close up as one goes around e, and thus the product of the corresponding
moduli of 4, at e is exp(2ni) (the product is taken in the universal cover €* of
C*). The consistency condition at e is written as

1]z =z)i=+1
i=1

for some integers r;, r/ depending on e [14]. Once we have chosen the numbers
z; (satisfying the consistency conditions), N acquires a smooth hyperbolic struc-
ture, in general incomplete. The deformation space U of the hyperbolic struc-
ture on N is the variety of u=(z,,...,2,)eC" which satisfies the consistency
relations. For ueU, we denote the corresponding hyperbolic manifold by N,.

Choose a pair of simple closed curves (m;,[;) on each torus section T; of ¢; (i
=1,...,h) which forms a basis of H,(T). For each ueU, let p,: I' > PSL,(C) be
a holonomy representation. After suitable choice of a base point, we consider
(m;, 1) as elements of I'. If p,(m;) and p,(I;) are not parabolic, they have two
fixed points in Cuoco which we can put at 0 and oo, so as Mdbius transfor-
mations on Cu oo,

pu(m): c—aic,  p,(l): c—b;c

for some a;,b,eC*. Set u,=loga; and v;=logh,. If p,(m;) and p,(l,) are para-

12

bolic, we set u,=v;=0.

Theorem (Thurston [14], Neumann-Zagier [131). The deformation space U of
the hyperbolic structure on N has complex dimension h and can be holomorphi-
cally parametrized by points (u,,...,u,)eC" in a neighborhood of u°eU.

We will need the following fact in the proof of Theorem 3.1 in Sect. 4. Let P
be the subset of U defined by P={ueU|N, has at least one cusp}.

Proposition 2.1. In a neighborhood V of u® in U, P is a proper algebraic subset.

Proof. In a neighborhood V of u4° in U, the points of V are parametrized by
{uy,...,u,) as in the above theorem, and PNV is precisely the set {ueV|some ;
=0}. q.ed.

If u=(u,,...,u)sV—P, for each i=1,...,h, there is a unique pair
(p;»q)elR* U oo, such that p,u;+q,v,=2ni. This collection of pairs is called the
generalized Dehn surgery invariant, and if each (p;,q;) is a pair of coprime
integers, N, can be completed to a closed hyperbolic manifold denoted by
(pran..(smay DY @djoining a closed geodisc y; to each end ¢;. Topologically
this manifold is obtained from N by performing Dehn surgeries which kill the
homotopy classes represented by p,m;+q,l;, i=1,...,h ([14], §4).

3. An analytic function on the deformation space and the p-invariant of mani-
folds obtained by hyperbolic Dehn surgery

The Lie algebra of PSL,(C), g, is the complex Lie algebra consisting of all 2
x 2-complex matrices of trace zero. We regard g as the tangent space of



The n-invariant of hyperbolic 3-manifolds 485

PSL,(C) at the identity. Let

1 0 0 1 00
h: = = .
(0 —1) ¢ (0 0) / (1 0)
Then {h,e,f} form a base of g over €. Let {h{, ek fF} be its dual base of

Homg(g, ©).

Definition 3.1. The complex differential form of degree 3 on PSL,(C), C, is de-
fined as the left-invariant differential form on PSL,(C) whose value at the

identity is given by h‘E negEAfE.

We can easily check that C is a complex analytic form on PSL,(C) which
is closed and bi-invariant. Now {h,e,f,ih,ie,if } form a base of g over R. Let
{h* e* f*,(in)*, (ie)*, (if)*} be the dual base of Homg(g,R). Let (6) and (0,))
be the fundamental form and the connection form respectively on PSL,(C)
=F(H? of the Riemannian connection of H® Then 0, and 8;; are the left-
invariant smooth forms on PSL,(C) whose value at the identity are given by

0,=2h*, 0,=e*+f*, 0, =(ie)* —(if)*
By= —20ih)%  O0,=Ge* +(f)* 0,,=e*—f*

From these, we have

h$=%(9 "i023),
;E:%((@ +912)+i(03+913)),
fék:%((@ —912)_i(93—013))-

We have

Lemma 3.1. C is written as

1
sz(‘wl AOLAD,—d(O A0, + 0,005, +05,70,,)

i
+4—7z2(012/\013/\023—612/\91 AO,—0,3A0, A0,—0,3A0,A05).

Since H*® has the constant sectional curvature —1, Q=—0,A0; (i,j
=1,2,3). Thus C is a complex analytic form on PSL,(C) whose real part is the
volume form plus an exact form (up to scalar multiplication) and whose imag-
inary part is the Chern-Simons form Q.

Let M be an oriented smooth hyperbolic manifold (complete or incomplete)
of dimension 3. Let F(M) be its SO(3) oriented frame bundle. Choose a base
point x,eM and set I'=n,(M,x,). Let M be the universal cover of M. Let d:
M — H? be a developing map. Let p: I'= PSL,(C) be the holonomy represen-
tation defined by d(g %)= p(g)d(X), where gel” and %XeM. Taking the differential
of d, we obtain the SO(3)-bundle map d: F(M)— PSL,(C). Since the form C is
left invariant, d* C projects to a closed form on F(M)=I\F(M) which we de-
note also by C. Let & be an orthonormal framing on M and let s: M — F(M)
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be the section defined by # Then s* C is a complex 3-form on M and {s*C
M

= [ C is defined.
s(M)
We define the notion of a simple framing. As before, H3={(c,t)|ceC and

t>0}. Let y be an oriented geodesic in H? and let y(— ) and y(+ o) be its
initial and terminal endpoints in @H® respectively. There is an element
gePSL,(C) such that gy=t-axis and g(y(—o0))=0 and g(y(+ o0))= 0.

Let (r, B, ¢) be the polar coordinate of H* defined by

c=r(sin f)(cos ¢ +isin @), t =r cos f, where r>0, 0<f<n/2 and 0<p <27
Let & (t-axis)=/(e;, e,, ;) be the framing defined on H?> — {¢t-axis} by

e, =r(cos B)0/0r, e,=—(cotB)0/0d, ey;=(cosp)o/op

for a point (r, §, §). We define the framing & (y) on H> —y by #(y)=(g~ 1), Z (t-
axis). Then #(y) does not depend on the choice of g. It can be seen that Z(y)
is invariant under the action of the subgroup of PSL,(C) which leaves y in-
variant. Next let w be a point of éH>. There is an element ge PSL,(C) such
that gw=o0. Let #(o0)=(e,,e,,e;) be the framing on H? defined by

e, =t(8/0x), e,= —t(8/0y), ey=—1(3/dt),

for a point (¢,t)=(x+iy,t)eH*. We define the framing #(w) on H?® by F(w)
=(g™ 1), #(0). In this case, the definition of % (w) includes an ambiguity of
rotations about the e;-vectors. However {e,} and {e,} form two parallel vector
fields on each horosphere with center w with respect to the euclidean structure
on it. It can be seen that & (w) is invariant up to rotations about its e;-vectors
under the action of the subgroup of PSL,(C) which leaves w fixed. We call
each of the framings #(y) and & (w) a simple framing.

Lemma 3.2. For a simple framing F(y) (resp. F{(w)), let s: H>—y (resp.
H?)— PSL,(C) be the section defined by it. Then s* C=0 ( pointwise ).

Proof. Since C is left invariant, it suffices to show the lemma for # (t-axis) and
F(w0). For # (t-axis), using the above polar coordinate (r, §, ¢),

s¥0,=(1/cos fydlogr, s*O,=(—tanf)d¢, s*0,=(1/cospf)dp,
s¥0,,=0, s¥*0,;=(tanpf)dlogr, s*0,,=(—1/cosp)d¢.

For % (o), using the coordinate (x+i y,¢),

%0, =(1/t)dx,  s*0,=(—1/)dy, s*0,=(—1/1)dt,
$*0,,=0, s*0,,=(1/)dx,  s*0,,=(—1/f)dy.

In both cases, we obtain s* C=0. q.e.d.

Lemma3.3. Let #(y)=(e,,e,,e;) be a simple framing on H®—y. Let v: H?
—y—-R/2nZ be a smooth map. Define a new framing on H®—vy, F'(y)
=(e},€5,€3), by
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¢, (x)= (€08 v(x)) €, (x)+(sin v(x)) e, (x)
¢(x) = —(sin v(x)) e, (x) + (cos v(x)) e, (x)
&5 =e;(x)

for xeH?—y. Let s': H>—y— PSL,(C) be the section defined by F'(y). Then
s*C=0.

The same result holds for a simple framing  (w).

Proof. Let s: H3—y— PSL,(C) be the section defined by % (7). Then the fol-
lowing relations hold,

%0, =(cosv)s* 0, +(sinv)s*f,,
§*0,= —(sinv)s*0, +(cosv)s*0,,
§*0;=s%0,,
§%0,,=s%0,,—dv,
§*0,;=(cosv)s* 8, ,+(sinv)s* 0, ,,
§*%0,5=—(sinv)s*0, ,+(cosv)s*h,,.
We have
S*¥C=s*C—dvond(s*0,)—idvad(s*0,,).
By Lemma 3.2 and its proof, s* C=d(s*0;)=s*0,,=0. q.e.d.

Let N be an oriented complete hyperbolic 3-manifold of finite volume with
h cusps (h=1). We assume that N has an ideal triangulation, N
=4(z;)u...ud(z,). N has h ends ¢,...,¢, and we set e=¢,U...ug,. Take a
base point x, in N and a point x; in a torus section of g; (i=1, ..., h). Let ¢,(t)
(0=t<1) be a path in N with ¢;(0)=x, and ¢;(1)=x;. Set '=7n,(N,x,) and T,
=(q)s n,(T? x;), where (¢q,), is the homomorphism: = (T2 x;)—=n,(N,x,) in-
duced by g¢,.

Let U be the deformation space of the hyperbolic structure on N. Let P be
the subset of U defined by P={ucU| N, has at least one cusp}. For ueU, let
p,. I'>PSL,(C) be a holonomy representation. If uelU ~P, then for each i
=1,...,h, p,(I}) is an abelian subgroup of PSL,(C) consisting of loxodromic
elements and it leaves a unique geodesic in H® invariant. We orient this geo-
desic (arbitrarily) and denote it by v, For 6>0, we set E, )
={xeH?|0<d(x,y,)£6} and T,(y,)={xeH?|d(x,7,)=05}, where d denotes the

hyperbolic distance. Let m and /TEL/) be the universal cover of E,(y,) and
T(y,) respectively. Then the action of p,(I;) on E;(y;) (resp. Tx(y,)) is covered by a

I~

free action of I} on Es(y,) (resp. T;(y,). The induced metric on T;T,,/) from the

i
A —

hyperbolic metric on H? lifts to a metric on ?‘,(\,5 and it gives T;(y;) the struc-
ture of the euclidean plane. The free action of I} on Ty(y) is generated by
parallel translations by two independent vectors of this euclidean plane [14].
We set

Eye)=I\E,(7)
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and
Ty(e)=I\T, (7).

For any sufficiently small 6 >0, E;(¢;) gives a neighborhood of the end ¢; of N,
which is diffeomorphic to T?x [0, 0) and Ti(e,) gives a torus section of e,
Since the simple framing % (y,) is invariant under the action of p,(I}), it defines
a framing on E,(s;) which we denote by #(g). We call E,(¢)) the J-neigh-
borhood of ¢, T,(e;) the o-torus section of ¢, and F(¢;) a simple framing on
E;(e).

If ueP, then some of the ends of N, are cusps. If the i-th end is a cusp,
p.(L) is a free abelian subgroup of rank 2 of PSL,(C) consisting of parabolic
elements. It fixes a unique point wedH?. p,(I}) acts freely on each horoball
neighborhood of w, and for a sufficiently small horoball neighborhood E(w) of
w, the orbit space p, (I;))\E(w) gives a neighborhood of the cusp ¢,. We denote
P (LN\E(w) by E(e). Then E(e,) is a flat torus section of ¢,. Since p,(I}) acts on
each horosphere with center w by parallel translations with respect to the eu-
clidean structure on it, any simple framing % (w) is invariant under the action of
p,(I}) and it defines a framing F(g) on E(g). We call this framing on E(g;) a
simple framing.

Proposition 3.1. There are a link m in N (possibly empty) and an orthonormal
framing F defined on N —m such that & is a simple framing on a neighborhood
of the ends (=cusps) ¢ of N and & has a special singularity at m. The link m
can be taken so that m is contained in an arbitrarily small neighborhood of the
cusps and each cusp contains at most one connected component of m.

Proof. Let E=E, U...UE, be a neighborhood of the cusps e={J¢; such that E;
= E(g;) is an orbit space of a horoball by the action of I}, and E,nE;=¢ if i%]
for i,j=1,...,h. Set T=0E. Then T consists of i disjoint 2-tori, T=T,u...0 T,
where T,=0E;, We choose arbitrarily a family of simple framings % (e)
={F(g)} on E (i=1,...,h). We consider the obstruction to extending (¢ to
an orthonormal framing on N. This is a purely topological problem. By defini-
tion, any two simple framings on E are homotopic by rotations about e;-
vectors. Hence the obstruction is independent of the choice of simple framings
Z(e). Set Ny=N —E. Then N, is a 3-manifold with boundary 6N, =T The only
obstruction to extending #(¢) over N is characterized by an element o of
H*(N, E, n,(S0(3))=H?*(N,, T,Z,). Consider the following commutative dia-
gram,

HYTLZ,)—>— H*(N,, L,Z,)—— H(N,,Z,)
D D D
H(TZ,)—2— H,(Ny,Z,) —— H,(Ny, TZ,),

where the upper (resp. lower) row is the cohomology (resp. homology) exact
sequence of the pair (N, T) with Z,-coefficients, D denotes the Poincaré dual-
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ity isomorphisms and j and k are the inclusions. The class k* o represents the
obstruction to putting a framing on N,, whence k¥ 0=0. By exactness o=k* o’

h
for some o'e HY(T,Z,). Put 6=Do'eH,(TZ,)=® H,(T,,Z,). 0 is written as 0
i=1

=X0,, 0,6H (T,,Z,). If 5,%0, 0, is represented by a simple closed curve m; on
T.. Set m = {Jm if some 6,0 and m' = ¢ if 5=0. We identify E with T x [0, c0),
where Tx0=T Then m’ lies on T x0. For each i such that m;+ ¢, let m; be a
simple closed curve on T, x 1 < E; which is isotopic to m;} in E;. Set m=Um,. It
can be seen that there is a framing &% on E—m such that #=%() on T
x 2, )< E and % has a special singularity at m. We compare % and (¢} on
T x0=T. The difference between these two framings on T defines a map from
T to SO(3), and its homotopy class is represented by an element f
=2feH (T, Z,)=®HYT,Z,). If 5,=0, we may assume that & =%(¢) on E,,
whence f;=0. If 5,%0, let I, be a simple closed curve on T;=T;x0 such that
I;nm,=one point. The pair {m;, 1)) forms a base of H (T;,Z,) and f; is charac-
terized by its values on them. The curve m is isotopic to a curve in Ty x2cE;
by an isotopy in E;—m. On T;x2, # =%(¢) and it follows that f,([m;])=0,
where [m}] is the homology class in H,(T;,Z,) represented by m;. Modulo 1-
chains in T;x [2, o), the curve [; is homologous in E,—m to a curve which is
the boundary of a small 2-disc in E, intersecting with m; at exactly one point.
Since # =% (e} on T;x[2,o0) and 4 has a special singularity at m, we have
[{UD+0 in Z,. Therefore the Poincaré dual of f; is represented by m} and
that of f =2, by m'={Jm}. On the other hand, the obstruction to extending
F(c) over N is also represented by m'. It follows that & extends to a framing

F on N—m, and & has the desired properties. q.e.d.

Proposition 3.2. Let m be a link in N given in Proposition 3.1. Then there is a
family of orthonormal framings {#,} ., such that, for each ueU, (i) &, is defined
on N,—m and it has a special singularity at m, (ii) %, is a simple framing F (g) on
a neighborhood of the end of N, and (iii) {%,},.y_p depends on ueU—P in a

smooth manner and the integral |  C defines a smooth function on U, where
§(Ny—m)
s: N,—m— F(N,) is the section defined by Z,.

Proof. Let & be an orthonormal framing on N—m which is a simple framing
on a neighborhood of the cusps ¢ and has a special singularity at m. For ueU,
N, has a different hyperbolic structure from N. By Schmidt’s orthonormali-
zation, orthonormalizing % with respect to this new hyperbolic structure, we
obtain an orthonormal framing %, on N,—m. Near m, &%, is homotopic to a
framing having a special singularity at m. By deforming in a neighborhood of
m if necessary, we may assume that % has a special singularity at m and the
family of framings {%,},., depends on u in a smooth manner. Let s': N,
—m— F(N,) be the section defined by #,. Then the integral | C defines a
s (Nu—m)
complex-valued smooth function on U. Let ue U —P. Each flat torus section of
a cusp of N gives a d-torus section of the corresponding end of N, for some
3>0. Hence the e,-vectors of &, coincide with the e;-vectors of a simple fram-
ing #(g) on a neighborhood of that end. Therefore deforming %, by rotations
about its es-vectors in a small neighborhood of the end of N,, we obtain an
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orthonormal framing %, such that & is a simple framing % (¢) on a neigh-

borhood of the end of N, and it has a special singularity at m. These defor-

mations can be carried out in a smooth manner with respect to ueU —P. By

Lemma 3.3, these deformations have no affect on the integrals of C. Thus
f C= [ C, where s: N,—m—F(N,) is the section defined by %, The

S{Ny—m S(Nu—m

fe:mily)of fra;ming)s {Z.},cu gives the desired one. q.e.d.

Let {#},., be a family of framings given in Proposition 3.2. Let «
=(fy,f5.f;) be an orthonormal framing defined on a subset of N containing m
such that f; (y) is tangent to m at each yem and it has the same direction as the
e,-vectors of # near y. For ueU, we orthonormalize x with respect to the
hyperbolic metric of N,, and the resulting orthonormal framing is denoted by
k,. Clearly the first vectors of k, are tangent to m at any points of m.

Now we define the function f (u).

Defnition 3.2. Let {Z,},.y and {x, },., be as above. We define the complex va-
lued function on U by

1 .
fus Zu k)= C‘T §(0,-i0,3),
S(Ny—m) T s(m)
where s: N,—m— F(N,) and s: m— F(N,) are the sections defined by %, and «,
respectively. If % and x, are prescribed, we write f(u; %,,k,) simply as f(u).
The following theorem will be proved in the next section.

Theorem 3.1. For each prescribed family {Z,.x,}, f(u) is a complex analytic
function on a neighborhood V of u® in U, where u® represents the original com-
plete hyperbolic structure on N.

Let ueU be a point such that N, can be completed to a closed hyperbolic
manifold M, by adjoining h closed geodesics {y;} to the ends {g;} of N,. Set y
={Jy; and L=yum. Then L is a link in M, and M,—L=N,—m. The section
s: N,—m— F(N,) defined by %, is considered as the section s: M,—L - F(M).
Note that %, is an orthonormal framing on M, —L having a special singularity
at L by conditions (i) and (ii) of Proposition 3.2. Let M, be the closure of s(M,
—~L) in F(M,). Then M, is a 3-manifold with boundary ¢M,=SUR, where §
and R are mapped onto y and m respectively by the bundle projection
FM,)—->M,. Let a=(¢,,¢,.¢;) be an orthonormal framing on a subset of M,
containing 7y such that e,(y) is tangent to y at each yey and it has the same
direction as the first vectors of %, near y. Then « and «, define the diffeomor-
phisms, ¢_: S'xy—S and ¥, S'xm—>R by

Y, (v,y)=(€,(y),(cos v) g, (y)—(sinv)2;(y), (sinv)e,(y)+(cosv)e;(y))
and
Y, (0, )=(f1(0), (cos v) f,(y) —(sin v) f3(), (sinv)f5(y)+(cos v)f5(¥)

for veS'=R/2nZ and yeyum. Set Y=y, 0y, S'xL->SUR. Let g: S'
x L— L be the projection onto the second factor. Let s: L—F(M,) be the
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section defined by « and x,. Then as in the proof of Lemma 1.5, we have
Y*0,(0/6v)y=y*6,,(8/0v)=0 (i=1,2,3) and ¥*60,,(0/0v)=1. It follows that
YO0y A 03)=Y* (0, 0,,0=0  and Y0, A5 =q* s*0, A(dv+g*s*0,,)
=g*s*0, Adv. The orientations of S* xy and S* xm are given by (e,, —3/dv)
and (f,, —&/0v) respectively. By calculations similar to those in the proof of
Lemma 1.5, we have

1
Ref(u —55 /\92,\93_, f Y*(O, A0 3)—— j 0,
"M, SixL T s(m)
1
=—vol(M, )+ 0, + 0, 0,
n? 2n stjy) s(!n) s(j;n)
: (M )+ jo,
nz T st
1

= 7-[2 VOI(Mu) + 5; ; length(yl)

Next we consider Imf(u). Following [10], the Chern-Simons invariant
CS(M,) of M, is defined by

1
CSM)= | 10— —((,0)+1(mK,)mod}Z,

s(Mu—L) 4n
where s: M,—L— F(M,) is the section defined by #. The fact that this is
actually an invariant of M, follows from Corollary 1.1 in Sect. 1. Using this
invariant we have

Imfw= | Q——f(m;c)

s(M,— L)

1
=2CS(M )+-—1(y,a) mod Z
2n
1
=2 CS(MJ—*—E Y torsion (y;)mod Z.

We set F(u)=exp(2nf(u)). Then F(u) is a complex analytic function on a
neighborhood V of u® in U by Theorem 3.1. For uelU such that N, can be
completed to a closed hyperbolic manifold M, by adjoining & simple closed
geodesics {y,} to the h ends of N,

h
F(u)=exp (2 vol(M,)+idn CS(M )) H exp(length (y,)+1i torsion (y,)).

This proves Theorem 2 in Introduction.

Remark. These computations show that F(u) is independent of the choices of
{#}, {x,} and m; in particular, f(u) differs only by an integral multiple of i
when different choices of them are made. However this can be proved directly
using the closedness of C.
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The n-invariant of M.

We consider #(M,), where ueV on which f(u) is analytic and N, is com-
pleted to the closed hyperbolic manifold M,. Set L=yum as above. Let a,
=(2,,¢,,¢;) be an orthonormal framing on M, such that & (y) is tangent to L
at each yeL and it has the same direction as the first vectors of # near y. As
noted before, &, is an orthonormal framing on M, —L having a special singu-
larity at L. Applying Theorem 1 to this case, we obtain

Theorem 3.2.
1
K(Mu)=%1mf(u)—6—7;f(v, w)+3d(F,0)+0(M,,a,)

1
o (’C (m’ Ku) - T(m! au))a
6n
where f(u) is the analytic function on a neighborhood V of u® in U defined in
Definition 3.2 using the framings {#} and {x,}, and ueV.

4. Proof of Theorem 3.1

Let N=4(z9)u...u4(z?) be the ideal triangulation of the complete hyperbolic
manifold N. For each point u={(z,,...,z,} of the deformation space U of the
hyperbolic structure on N, let N,=4(z,)u...u4(z,) be the ideal triangulation
of N,. For each ueU, starting at the ideal tetrahedron in H? with vertices
{0,1,z,, 00}, by analytic continuation, we obtain a developing map d,: N,— H>,
where N, is the universal cover of N,. Thus we obtain a family of the develop-
ing maps {d,},., which depends smoothly on u.

Let p,: F=m,(N,xq)— PSL,(C) be the holonomy representation defined by

d.(gX)=p,(g )d, (%), where %eN, and ger.

N, has the ideal triangulation con51st1ng of the infinite ideal tetrahedra each
of Wthh is a lift of some 4(z), i=1,...,n. Let 0 be the set of all the vertices of
those infinite ideal tetrahedra. Then we can define the image set d,(0) in 0H®
=Cu . d,(0) is a subset of dH> consisting of all the points each of which is a
fixed point of the subgroup p,(gl;g~ ") for some geI’ and I=m,(e) (i=1,...,h)
For each 0€0, the coordinate of d,(¢) in C U oo can be written as a meromor-
phic function of (z,, ..., z,). Hence it gives an analytic map from U to the Rie-
mann sphere Cu 0.

Lemma4.1. Let {0,,0,,05} be a set of three distinct points in 0. Let acU and
let U, be a neighborhood of a in U. Assume that d (0)*d,(0) (i#], i,j=1,2,3)
for each ueU,. Then for each ueU,, there is a unique element g(u)e PSL,(C)
such that gw)d,(o)=d {0, (i=1,2,3) and the map U,su—g(u)e PSL,(C) is an
analytic map.

Proof. If we represent g(u) by a matrix in SL,(C), the components of the matrix
are given by the solutions of linear equations whose coefficients are poly-
nomials of the coordinates of d (o) and d (o) in Cuoo (i=1,2,3). From this,
the lemma follows. q.e.d.
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For each subset A of N,, we denote by A the inverse image of A of the
covering map N,— N,. Let m be a link in N given in Proposition 3.1 and let
{F}uev be a famlly of framings given in Proposition 3.2. Then the lift of %, to
N, —# defines the map §: N, —#i— PSL,(C) such that the following dlagram
commutes

N, —#i ——> PSL,(C)

u

dlA

H3

where d, is the restriction of the developing map and the right vertical map is
the bundle projectiqn of PSL,(C)=F(H?) as in Sect. 2.
Choose lifts in N, of the n ideal tetrahedra of N,, A(z,), ..., 4(z,), so that

D,=A(z)u...ud(z,)

is a connected fundamental domain in N, with respect to the covering transfor-
mation group. Then D, consists of finite arcs. Set D, =D, —D,nm. By defi-
nition, [ C= f §* C, where s: N,—m— F(N,) is the section deflned by &

s(Nu m)
As in Sect. 2, let P be the subset of U defined by P= {ueUlN has at least
one cusp}. By Proposition 2.1, there is a neighborhood V of u®=(zY,...,2%) in

n

U such that P~V is a proper algebraic subset in V. We prove the analyticity of
fu) on V.

Since f(u) is a smooth function on V and VNP is represented as the zero
set of some non-trivial analytic functions, by a fundamental theorem of the
complex function theory of several variables, it suffices to show that f(u) is
analytic on V —P (e.g. [3]). Let us fix an (arbitrary) point acV —P. Take an
open neighborhood of a in V—P, V,, such that V, is analytically equivalent to
the unit ball in C* (see Sect.2) and V,=V —P. On V,, we will express f(u) by a
path-integral of an analytic closed 1-form.

Let {0,},,..., be all the vertices of the ideal polyhedron D,, where r=
# {the vertices of D,}. For each uel,, each vertex o, is one of the two fixed
points of p,(g, I;g; ') in 0H?, which are the end points of the geodesic y, in H?
left invariant by p,(g, ;g7 "), for some g, and L=n(¢)(i=1,...,h). Set for
6>0,

D;(y)={xeH*d(x,7,) <4},

where d denotes the hyperbolic distance. Since the framing % on N,—m is a

simple framing on a neighborhood of the end of N, and V, is compact, we may

choose >0 to be so small that ermUDa(yk)qu and $(D,nD;(y,)) (= PSL,(T)
k

=F(H?) is a part ot; the simple fracming F (y,) for each ueV, and k=1,...,r
Set D/=D —rh—UD,, 7)=D, —U Dy(7,). By Lemma3.2, §* C=0 on UD‘;(vk)

and we have js* C js* C. The map §: D —» PSL,(C) is an immersion, and

by taking the cTosure of the image (D)) in PSL,(C), we can compactify D, and
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we denote the resulting compact polyhedron by X,. Since Z% has a special
singularity at m, by the same argument as in the proof of Lemma 1.2 (using the
lift of the framing x, on m to i), we see that X, is obtained by attaching a
finite union of cylinders diffeomorphic to S'x(D,nm) after deleting D, it

from D, —{J Dy(7)-
p

Fig. 2

The immersion § extends naturally to an immersion 3: X, — PSL,(C) and
| 8 C= | §* C. The boundary 0X, consists of three parts, 0X,=Y,0Z, UW,,
D’ Xu

where
Y,=0X,—D, (the set of the compactifying points)

Z,=D, f\(kk) Ds(y:))
W,=0X,—(Y,UZ,).

For each 2-face S, of W,, there is another 2-face S, of W, such that S, =gS§,
for some gel uniquely determined by S,, and W, consists of finite pairs of
such 2-faces (S,,gS,). Now we fix aeV, as before, and set X=X, Y=Y, Z
=Z, W=W, and W=[J(SugS). We note that the ideal triangulation of N
gives a combinatorial triangulation of N and the link m is a combinatorial
submanifold of N. If the hyperbolic structure on N varies, the combinatorial
properties of N and m remain unchanged. Thus the combinatorial shape of X,
remains unchanged when u varies. Each X, has the boundary pattern indicated
in Fig. 2 and we have a family of diffefomorphisms

{hy: X=X}

ueVq

preserving this boundary pattern and sattisfying &, (gx)=gh,(x) for xeS<W.
Define

H: V. xX—PSL,(C)
by H(u,x)=5(h,(x)) for ue¥, and xeX.
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We define smooth 1-forms of three kinds on ¥, as follows.

() o,(g)-
Let gel'. We set

1
©,(8)=(0, () 5-(6, —i6,))
where we regard u—p,(g) as a map V,— PSL,(C). w,(g) is an analytic 1-form
on V,.
(i) @,(g).
Let G: PSL,(C)x PSL,(C)— PSL,(C) be the multiplication of PSL,(T),
G(g,,8,)=818,(g,,2,€PSL,(C)). Since C is a bi-invariant form on PSL,(T),

G* C is written as
G*C=p*C+o*' +ut2+p*C

where p;: PSL,(C)x PSL,(C)— PSL,(C) is the projection onto the j-th factor
o i J
(j=1,2) and "’ is an analytic form belonging to A PSL,(C)® A PSL,(C) (i,j

=1,2).
Let (S,gS) be a pair of 2-faces of W. Let

pxH: V,xS— PSL,(C) x PSL,(C)

be the map defined by (p x H)(u,x)=(p,(g), H(u,x)) for ueV, and xeS. Then (p
x H* % is a smooth 3-form on V,xS. By partial integration along S, we
define the smooth 1-form on V,,

wz(g)=£(p x H)* o'2.

Let (uy,...,u,) be a complex coordinate on V¥,. Since the map
V. s3u— p, (g)e PSL,(T) is analytic, each term in (p x H)* w*? which involves the
factor du; (i=1,...,h) in its expression in the coordinate vanishes under the
above partial integration. Hence w,(g) 1s a smooth 1-form on V, which does
not involve di;, that is, it is of type (1,0).

(i) w;(A).

For ueV,, let 4, be one of the ideal tetrahedra {4(z,)} (i=1,...,n), where N,
=A(z,)V...u(z,). Let J, be one of the four connected components of Z,n 4.
Then J, is a triangle with 3 vertices {v,(u),v,(u),v,(1)} each of which is an
intersection of J, with an edge geodesic of the triangulation of X,. There is a
unique geodesic y(u) in H? such that d,(J) <= Ty(y(u))={xeH?|d(x,yu))=05}.
Moreover for each j=0,1,2, there is a unique geodesic y;(u) in H 3 such that
d(v;W)=y;(u) " Ty(y(u)). By assumption, §(J)=PSL,(C)=F(H?) is a part of
the simple framing # (y(u)). We regard 5(v;(u)) as a framing at d,(v;(w)). There is
a unique element g;(u)e PSL,(C) such that S(v;(u))=g;(u)3(v;() (j=0,1,2).
Lemma4.2. The map g;: u—g;(u) is an analytic map from V, to PSL,(C) (j
=0,1,2).

Proof. The geodesics y(u) and y;(u) have a unique common end point o(u)edH 3,
Let {o(u), o'(u)} be the end points of y(u) and let {o(u), 0" (u)} be those of y,(u).
Then {o(u),0'(u),0" (1)} are three distinct points in ¢H>. Hence there is a unique
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element ge PSL,(C) such that g maps the ordered triple {o(a),0’(a),0"(a)} to the
ordered triple {o(u),0'(u),0"(u)}. Then g maps y(a) to y(u), y;(a) to y;(u) and
F(y(a)) to F(y(u)). Since J is a constant, it follows that g=g,(u). By Lem-
ma4.1, the femma follows. q.e.d.

There are two elements of PSL,(C), w, and w,, such that both of them
leave y(a) invariant and §(v,(a))=w, 5(v,(a)) and 5(v,(a))=w,5(vy(a)). Set a;(u)
:gj(u)wjgo(u)"1 (j=1,2). Then a;(u)(3(vy(u)) =5(v;(u)), and a;(u) leaves y(u) in-
variant (j=1,2). The subgroup of PSL,(C) consisting of those elements which
leave y(u) invariant is isomorphic to €*. The restriction of the simple framing
F(yw) to Ty(yw), B,=F (W) T;(y(u)), is an orbit of the €* action on
PSL,(C) by the left multiplication of this subgroup. The universal cover B, of
B, has the €C-action which is the lift of the C*-action on B,, and this C-action
gives an identification of B, with €. The map § immerses the triangle J, into
B,, and the immersed image §(J,) lifts to an embedded triangle J, in B,. With
respect to the identification of B, with @, J, is considered as an affine triangle
with vertices {¥,(u), 7, (1), 7,(u)} where ¥;(u) is the lift of $(v;(u)) in B, to B, (
=0,1,2). Let (t5,t,1,) be the barycentric coordinate of J, with respect to the
affine structure on B,=C, and we write the points of J, as Z Ident1fymg
J, with J, by the embeddmg, we write the points of J, as 2t . The ele-
ments a,{u) and a,(u)ePSL,(C) are contained in the subgroup Wthh leaves
y(u) invariant, hence they are considered as two elements in C*. Hence we may
write as

S(Ztjviu)=a ()" ay(u)*3(vy(u),
where a;(u) is defined by analytic continuation. Since $(v,(u))=g,(u)3(vy(a)),
we have
$(Zt;v;)=a, )" a,(u)* ge(u)5(vy(a)).

Let J be the euclidean triangle in the real plane R? with vertices
{(0,0),(1,0),{0,1)} and let (t,,t,,¢,) be its barycentric coordinate. Define the
map

A: V,xJ—>PSL,(T)
by
A, (tos 1y, ) =a ()" ay(u)? go(u).
Then A is a smooth map and, for each (¢4,¢;,¢,), the restriction of 4 to V,

X (tg,t;,t,) gives an analytic map from V, to PSL,(C) by Lemma 4.2,
We define

w3(A)=£A* C,

where | means the partial integration along J. Then w,(4) defines an analytic

J
1-form on V,.
Using the above smooth 1-forms on V, of three kinds, we proceed to prove
that f(u) is written as a path integral of an analytic closed 1-form on V,.
Let u(t) (0<t<1) be a smooth path in V, with u(0)=a and u(l)=u. Set
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H(t,x)=H(u(t),x) for te[0,1] and xeX, where H(u,x): V,x X — PSL,(T) is de-
fined as before. H=H(¢,x) is a map from [0,1] x X to PSL,{C). Since C is a
closed form, by Stokes’s theorem, we have

0= [ dH*C

[0,11xX

= [ H*C- | H*C+ | H*C.
1xX OxX {0, 11 xéxX

Since, for j=0,1, H(j,x)= H(u(j), x) =8 h,;(x), we have
| H*C= j§*C and [ H*C=[3§*C.
1xX OxX X
It follows that
j§*C—j§*C=— j H*C. H
Xu X [0,11 x X
Since 6 X =YuZ UW as before, we have
H*C= | H*C+ | H*C+ | H*C. )

[0,11x8X [0,11xY [0,1]1xZ [0, 1] xW

At first we consider the integral on [0,1]xY of H* C. The framing x,
=(f1,f2.f3) on m in N, lifts to the framing &, =(f,,f;,f;) on i in N,. As in the
proof of Lemma 1.2, we have the diffcomorphism

¥ [0,1]x S x(D,nm)—>[0,1]x Y
defined by

Y60, 9)={t} x hy (F10), (cos ) [ () —(sin v) f3(»),
(sin v)f,(y)+(cos 0) f3(»)

for te[0,1], veS'=R/2nZ and yeD,nm, where we identify D ,~m with
D,,nm (0=t£1), by, Y- Y, is the diffeomorphism defined as before and
Y, 1s considered as an (immersed) submanifold of PSL,(C). As in the proof of
Lemma 1.5, we have (Y*H*0)(0/0v)=*H*0,)(0/0v)=0 (i=1,2,3) and
(W* H* 0,,)(0/0v)=1. It follows that

lp*H*C————llz*H*(d(G /\023))+ l//*H*(923/\d923)

The orientation of [0,1]x §! x(D,N#) is given by (8/0t, —8/dv,f,). By calcu-
lations similar to the ones in the proof of Lemma 1.5, using the partial integra-
tion along S' and Stokes’s theorem, we have

f H*C= [ y*H* C
[0,1]1xY [0, 11 x ST x (D g 1)
=——1- f s*6,—i6 )-1—L j s*¥(0,—i0,,)
2n1x(Damrﬁ) ! 23 2n0x(Damrﬁ) ! 23
1
+5= .[ s*¥(0,—i0,5),

2n [0, 1] x 8(Dg A 1)
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where s: [0,1]x(D,nm)— PSL,(C) is defined by s(t,y)=F&,(y) for te[0,1]
and yeD, . It can be easily shown that

j s*0, —i0,5)= j (0,-i0,3),

1 % (Dq N 1) s(m)

where s: m— F(N,) is the section defined by «,, and

f s*(0,—i0,3)= f (0,-i0,3),

0 x (Dg nrit) s(m)

where s: m— F(N,) is the section defined by «,.
By definition of f(u) and (1) and (2) above, we obtain

1 .
f@-f@== | s*(0,-i0;)
[0,1] X 8(Da A rit) n
- | H*C- | H*C 3
[0, 11 xW [0, 11x 2

We consider the three integrals of the right hand side of (3) separately.

1
@y j S*E(gx_iezs)

[0,1]1 X 8(Dy n 1)

D, consists of finite arcs and 0(D,n) is a finite union of points. As m
is a finite union of disjoint simple closed curves, d(D,Nn#) consists of finite
pairs of two points (y,gy), where gel' is uniquely determined by y. For sim-

. 1 . . .
plicity, we set (p=2_7?(91 —i0,,). Since y and gy have mutually opposite orien-

tations in 0(D,Nm), we have

o oste=Ia( [ ste— [ $0), (,==1)

[0, 11x 8(Dq 1) [0, 1] x gy [0, 11xy

where {0,1]x gy and [0,1] x y are both oriented as [0, 1] with natural orien-

tation. Since s(t,y) =K, (y) (0=t<1) and £, is the lift of x,,, to M, we have
S(tagy)zpu(t)(g)s(tay)'

Hence the map t —s(t,g y) is the composition of the maps
[0,1]-2225 PSL,(C) x PSL,(C) —>» PSL,(T),

where (p x 5)(1)=(p,,(g), s(t,y)). Since @ is a bi-invariant 1-form on PSL,(CT),
we obtain G* @=p¥ ¢+ p% @. It follows that on [0,1] x gy,

S* D =(p,,(g)* P+s(t,y)* .
Hence
[ sto— | s*o

[0,11xgy [0,1] xy

= _f (pu(t)(g))* ®.
[0,1]
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Therefore | s* @ is a sum of path integrals along u(t) of 1-forms of
[0, 1] x 6(Dq 1)

type (i).

(i1y | H*C.

[0,11xW

W is a finite union of the pairs of the 2-faces (§,gS). Choose the orien-
tations of S and gS such that g: S—gS is orientation-preserving. Then the
orientation of S induced from X is opposite to that of gS. Hence

[ H*C=Ye( | H*C— [ H*C), (e5=2%1).

[0, 11 xW [0,1]x g8 [0,1]1x8

For each (1,gx)e[0,1]xgS, H(t,gX)=8h,,(8X) =3 g(h,,) (X)) =Py, (8) S hyy(X)
=p,u(g) H(t,x). Hence H: [0,1]xgS— PSL,(C) is considered as the compo-
sition of the maps

[0,1] x S —2%5 PSL,(C) x PSL,(T) — PSL,(C),

where (p x H)(t,x)=(p,(8), H(t,x)). As before, G* C=p¥ C+ o> '+ o' ?+p}C.
For dimensional reasons, (p x H)* p* C=0 and (p x H)* »*! =0. Therefore
(Glpx H)* C=(p x Hy* ™2+ H* C.
It follows that
[ H*C— [ H*C
[0,1]1 xgS {0,11x 8

= [ (pxHrob?

[0,11x8

= | (lpxH*o"?)

[0,11 §

= j ,(g).
[0,1]

This shows that [ H* C is a sum of path integrals along u(¢) of 1-forms of
type (ii). [0, 11 xW
(i) [ H*C
[0,11xZ
Z=2Z,is a finite union of the triangles {J,} described in (iii) and
| H*C=Y [ H*C

[0,1]1xZ [0, 11 xJq

Each J, has the barycentric coordinate as in (iii) and identifying J, with the
triangle J in the real plane R* with vertices {(0,0), (1,0), (0,1)}, H is considered
as the composition of the maps
u(t)x 1: [0, 11 xJ -V, xJ
and
A: V,xJ - PSL,(T),
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where A is the map defined in (iii). It follows that [ H*C is equal to a
[0, 1] xJq,
sum of path integrals along u(t) of 1-forms of type (iii).

By (1), (ii) and (iii) above, we see from (3) that (f(u) — f(a)) can be written
as a path integral along u(¢) of a smooth 1-form w on V¥, which is a finite sum
of 1-forms defined in (i), (i) and (iii). Let (u,,...,u,) be a complex coordinate on
V,. Then each 1-form defined in (i), (ii) and (iii) does not involve di; (i=1,...,h)
in its expression, that is, it is of type (1,0). Therefore w is written as

w=Y Uy, ..., u,)du,

where ;(u,,...,u,) is a smooth function of (u,,...,u,) for each i=1,...,h. Thus

Jw—f(a)= !)Zwi(ul,...,uh)dui.
ult,

The path u(f) may be arbitrarily chosen in V, and the left-hand side of the
above equation depends only on the end point u=wu(1). This implies that w is a
closed form. However dw=0 implies that each w, satisfies the Cauchy-Rie-
mann equations at each point of V,. Hence w is an analytic 1-form and f(u) is
an analytic function on V,. Since a is an arbitrary point in ¥V — P, this proves
Theorem 3.1.

5. An example Figure eight knot complement

Let S be the unit sphere in €2, §3={(z,,2,)eC?||z,|> +|z,|>=1}. We orient >
as the boundary of the unit disc in €2 Let K be the figure-eight knot in S°.
Then N=5°—K has a complete hyperbolic structure of finite volume with one
cusp [14]. N is decomposed into two ideal terahedra N = A(e™/3)u A(e™/?). The
deformation space U of the hyperbolic structure on N has complex dimension
1 and the points of U are parametrized by pairs of complex numbers (z, w) in
the upper half plane satisfying the equation (I) in Introduction. For u
=(z,w)eU, the corresponding hyperbolic manifold N, is given by N,
= A(z)u A(w) with same gluing pattern as N, and the equation (I) is the con-
sistency condition in Sect.2 ([14], §4).

For u=(z, w)Fu’=(e""?, "/3), let T;(¢) be the é-torus section of the end &
of N, (8 is sufficiently small). Let (m,,!,) be a meridean-longitude pair on T(s):
in S3 m,; bounds a 2-disc in a tubular neighborhood of K and I, is homo-
logous to zero in Q°—K. Taking a suitable holonomy representation p,:
n,(N,)— PSL,(T), p,(m,) and p,(l,) are given as isometries of H> by

pumc,)=(w(l —z)c, [w(l-2)1)
p)(e, )= (12 c, |22(1-2)*1),
for (c,t)eH? ([14], §4).

For each coprime pair of integers (p,q) such that [p|=5 if |g|=1, there is a
point u(p,q)=(z,w) of U satisfying the equation (II) in Introduction. N, can be
completed to the closed hyperbolic manifold M, , by adjoining a simple closed
geodesic y to the end of N, ([14], §4).

(I11)
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We prove Theorem 3 in Introduction by applying Theorem 3.2 to n(M, ).
Our method is as follows. At first we determine the analytic function f(u)
= f(z,w) for a suitable family of framings {#} and {k,}. Next we compare
n(M, ) with n(L(p,q)) which is known [2], where L(p, q) is the Lens space with
the standard metric. Note that M, is topologically obtained by performing
Dehn surgery of type (p,q) along K. If we perform Dehn surgery of type (p, )
along the trivial knot K, in S, we obtain the Lens space L(p,q). From this we
obtain a degree 1 map H: M, ,— L(p,q), and using the functorial properties of
the third and the fourth terms of the right-hand side of the equation in Theo-
rem 3.2, we deduce the formula in Theorem 3.

We need some preliminaries.

Let 11 S?—S* be the involution defined by i(z,,z,)=(%,, —z,) for
(z,,2z,)€S>, where Z, is the complex conjugate of z,. Then it is well known that
the figure-eight knot K can be arranged so that 1(K)=K and the two fixed
points of 1 lies on K. Let E be an -invariant tubular neighborhood of K. Then
there is a 2-disc D in the interior of E, E, such that ((D)=D and DK =one
point. Let m=0D and L=Kum. Let S, ={(z,0)lz,|=1}, S,={(0,z,)|1z,/=1}
and L,=8,uUS,. Then 1(S,)=S; and 1(S,)=S5,.

Lemma 5.1. There is an orientation-preserving map k: S®—S> such that

(i) k(K)=S, and kim)=S,,

(ii) k maps the neighborhood E of L=K um diffeomorphically onto a neigh-
borhood E, of Lo=S,US,, and k(S* —E)cS*—E,,

(iii) ki=1k.

Proof. Let Soz{(l/]/i z/ﬁ)||zl=1}cS3. Then 1(S,)=S,. Let R, be a small
closed tubular neighborhood of §, such that 1(R;})=R, and RonLy=¢. Let E,
=53 —lio. Then L,<E,. Let I' (resp. I;) be a simple closed curve on JE (resp.
OE,) such that 1(I')nl'=¢ (resp. 1(l;)NnI=¢) and it is homologous to zero in
S*—E (resp. §°—E,). Let D? be the unit 2-disc in R? and let 13D? be the 1-
sphere of radius 4 in R? Then the quadruples (E, K,m,l') and (E,,S,,S,,1;) are
both equivariantly diffeomorphic to the quadrupole (S* x D, S'x0, 1x40D?,
St x 1) with involution defined by {z, y) = (Z, —y), where zeS! and yeD? and we
regard R? as the complex plane C. Hence there is an orientation-preserving
difftomorphism k': E—E, such that k'(K)=S,, k'(m)=S,, K'(lI')=1I;, and k"1
=1k The complements S*—E and S —E=R,, have the free involutions (the
restrictions of 1), and k' is defined on their boundaries. Let k': 4(S3
—E)/z — 0R,/1 be the quotient diffeomorphism. Since R,/1 is homotopy equiva-
lent to S*, the only obstruction to extending k' to map from (S* —E)/1 to R/t
lies in the group H2((S*—E)/1, 8, Z)=1Z, and it can be measured by the differ-
ence of the homology classes I?* [I7 and [I,] in H,(OR,/1,Z), where I' and [
are identified with their images in the quotient spaces and K'(I) and I, are
considered as the curves in R /1. Since k'(!')=1j, this obstruction vanishes, and
k' extends to a map k”: (S*—E)/i » R,/1. Let k’: §* —E— R, be the map which
covers k” and coincides with k' on the boundary d(S* — E). Define k: $> > $3 by
k|E=k and k|S?~E=k". qed.
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Lemma 5.2. The map k in Lemma 5.1 is covered by a vector bundle map Tk:
TS*—TS? of the tangent bundle of S* such that Tki, =1, Tk, where 1, is the
differential of 1.

Proof. Let E, be as in the proof of Lemma 5.1. By the construction of k in the
proof of Lemma 5.1, k{E: E— E, is an equivariant diffeomorphism. We set Tk
=k,, the differential of k, on E. The restrlctlons of 1, to T(S? —E) and TR, are
free mvolutlons The quotient spaces T(S®— )/1 and TR/1, are the tangent
bundles of (S — )/1 and Ro/t. respectively. The quotient of k, k is defined on
their boundaries, k T(S3 - )/1 |6(S? — )/1—>TR " 16R0/1 The only obstruc—
tion to extending thls bundle map to a bundle map from T(S®— )/1
TR,/1, lies in the cohomology group H*(S>—E/1, 8, n,(GLy(R))=Z,. It can
be seen that the obstruction lies in the subgroup §* H'(0(S? —E)/I,ZZ), where
0* is the coboundary homomorphism, and it can be measured by the restric-
tion of k,, k,: T(S*—E)/1,|I' = TR,/1,|1l,, where I' and [, are the curves de-
fined in the proof of Lemma 5.1. Since k maps I’ to [, 0E to dR,, diffeomorphi-
cally and Tk=k, on E, it can be seen that this obstructlon vanlshes Hence
there is a bundle map extending k from T(S*— )/1 to TRy/1,, and taking
the bundle map from T(S?>—E) to TR which covers it, we obtain the desired
bundle map Tk. q.ed.

Lemma5.3. Let k and Tk be the map and the bundle map in Lemmas 5.1 and 5.2
respectively. Then

(i) the map k: S — S extends to a map k: D*— D*, and

(ii) the bundle map Tk@®1: TS*@®e— TS’ D¢ extends to a bundle map Tk:
TD*— TD* which covers k, where l: ¢~ ¢ is the identity map of the trivial line
bundle and TD*|S*=TS*®e.

Proof. (i) Since D* is contractible, (i) follows by obstruction theory.

(ii) The only obstruction to extending Tk@® 1 to a bundle map over TD*
which covers k lies in the group H*(D*,d,75(GL,(IR)). Since Tk@ 1 preserves
the subbundle &, this obstruction is contained in the image of the composition
of the maps

H3(S3,1,(GL,(R) — > H(S?, m,(GL(R)) —— HYD*, §% 7,(GL,(R))),

where i: GL,(IR) > GL,(IR) is the canonical inclusion and é* is the coboundary
homomorphism. Let F be a framing on $* and set F(x)=/(e,(x), e,(x), e5(x)) for
xS, where e,(x)eT,S* Then (Tk)(F(x))=(Tk(e,(x)), Tkie,(x)), Tkles(x))
=(e,(k(x)), e,(k(x)), e5(k(x))) A(x) for some A(x)eGLL(R), where GL4(IR) de-
notes the connected component of GL,(IR) containing the identity element.
Thus we obtain a continuous map A: S3—>GL“§(]R) and the above obstruction
can be measured by the homotopy class of A, [A]en;(GL5(IR))=Z, which does
not depend on the choice of the framing F. By Lemmas 5.1 and 5.2, ki=1k
and Tk 1, =1, Tk. If we replace F by 1, F, A(x) is replaced by A(:x) for xeS3.
Since 1 is orientation reversing, we have [A]= —[4]. It follows that [A]=0,
and the obstruction vanishes. g.e.d.
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Let N=5?—K be the complete hyperbolic manifold of finite volume with
one cusp. Then the involution 1 can be considered as an isometric involution 1
on N. Let m be a meridean curve of K which lies on a flat torus section of the
cusp of N. We choose m so that 1y(m)=m and m is a simple closed geodesic
with respect to the euclidean structure on the flat torus section. The map k in
Lemma 5.1 gives an equivariant map k: N —(S>—S,) such that k(m)=S5,.

For a point (z,,z,)€S*—L,=8*—S§,US,, we set (z,,z,)=(}/texpi6,
V1—texpiy), where 0<t<l1, 0£0<27n and 0=y <2n. In this parametri-
zation, 1 is represented by (6, y,1)=(—0,¢¥ + m,1).

Each torus section T of the cusp of N has a meridean-longitude pair of
closed geodesic curves on it with respect to its euclidean structure. By con-
struction of k in the proof of Lemma 5.1, we can make the following assump-
tion on k,

(#x) In a small neighborhood of the end of N, k maps each flat torus sec-
tion T to a torus T,={(6,¥, )|t =c}, and k maps each euclidean closed geodesic
curve on T parallel to the meridean (resp. the longitude) on it to a curve {6
=const} (resp. {{y=const}) on T..

For each ueU, if we deform the hyperbolic structure on N to N,, each flat
torus section of the cusp of N becomes a d-torus section of the end of N, for
some 6>0. Hence k has the same property (*x) in a neighborhood of the end
of N,.

Let u(t) be a smooth monotone increasing function defined on [0, 1] such
that u(t)=0 (0<t<1/3) and u(t)=1 (2/3=t<1). Let % be the framing on §?
— L, defined by, for x=(0,v,1),

1 q
F(x) = (Vl___—la/alp, 7 8/06,27/1(1 =1 6/6t)

cosmu(t) 0 -—sinmu(t)
0 1 0
sintu(t) 0 cosmult)
Then

—41/%—:6/0%’ —1%6/0(), _zma/ﬁt) near S,

1 |
7= (T_?a/aw, —]ﬁa/ao, 21/?@0/&) near ..

Lemma 5.4. There is an orthonormal framing F =(e,,e,,e;) on N —m such that

=

(i) # is a simple framing F (¢) on a neighborhood of the cusp and F has a
special singularity at m,
(ii) [ Q=0, where s: N—m—F(N) is the section defined by %, and
S(N—m)

(iii) the bundle map Tk in Lemma 5.2 can be deformed by fibre homotopy so
that it may satisfy Tk(F)=%,.
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Proof. Let Tk: TN — T(S*~S§,) be the restriction of the bundle map in Lem-
ma 5.2. There is a framing %' =(e},e5,e3;) on N—m such that Tk(F'(x))
=%y (k(x)) for xe N —m. For each xe N —m, applying the Schmidt orthonorma-
lization to #’(x), we obtain an orthonormal framing & (x)=(e,(x), e,(x), e5(x)).
By (x#) and the construction of k, we may assume that, near the cusp, the e,-
vectors are transversal to each torus section of the cusp and F is i1,-
equivariantly homotopic to a simple framing. Near m, the ¢,-vectors are direct-
ed along m and & is 1y-equivariantly homotopic to a framing which has a
special singularity at m. Hence we may deform %, 1y-equivariantly near m, so
that it may satisfy (i). Since 1, Tk=Tk1y. and 1, maps the vector fields {d/0y},
{6/00} and {0/0t} to {0/oy}, {—0/00} and {&/0t} respectively, i1y, maps the
frame field (e}, e;,e3) to (e}, —e5,e3) and hence (e, e,,e;) to (e;, —e,,e;). From
this, it follows that 1§ s* Q =s* Q by definition of the Chern-Simons form Q. As

1y reverses the orientation of N, | s¥*Q= [ i%s*Q=— [ s*Q and it must
N—m N—m N—m
be zero. This proves (ii). By construction, we may deform Tk by fibrewise ho-

motopy so that it may satisfy (iii). g.e.d.

Using the orthonormal framing # on N in Lemma 5.4, by Proposition 3.2
and its proof, we obtain a family of orthonormal framings {#}, ., on the fami-
ly of hyperbolic manifolds {N,},., such that each &% has the properties men-
tioned in Proposition3.2 and Z.=%, where u® corresponds to the original
complete hyperbolic structure on N.

We have chosen the meridean curve m in N lying on a flat torus section of
the cusp. We choose an orthonormal framing x=(f,,f,,f;) defined on m as
follows: at each yem, f,(y) is the unit tangent vector at y of m having the same
direction as the first vectors of & near y, f,(y) is tangent to the torus section
on which m lies, and f;(y) is normal to it. Note that this framing x induces a
product structure D?xm on a tubular neighborhood of m such that 1 xm is
homotopic to zero in S —m.

Lemma 5.5. Let s: m— F(N) be the section defined by k. Then | 6,5=0.

s(m)
Proof. By definition of «, it follows that s*0,,=0. q.e.d.

For each ueU, let k, be the orthonormal framing on m defined by the
Schmidt orthonormalization of k with respect to the hyperbolic metric of N,.
We define the complex function f(u) on U by, for ueU,

1

fw)= C—5— | (0,—i0,3),
s(N.,f—m) 27‘5(&) ! 2

where s: N,—m— F(N,) and s: m— F(N,) are the sections defined by %, and «,

respectively.

Proposition 5.1. f(u) is a complex analytic function on U.

Proof. By the proof of Theorem 3.1, it follows that we may take as V in Theo-
rem 3.1 any neighborhood of u° such that VNP is a proper analytic subset in
V, where P is defined as before. In this case P={u°} and we may set V
=U. qed.
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Theorem 5.1. For u=(z,w)e U, setting f(z,w)= f(u), we have

i 7
fem= =5 (R&+Rom =),
i 6
where R(x} is the function on the upper half plane defined by
R(x)=}log xlog(l —x)— { log(1 —t)dlogt.
[\

Proof. At first we calculate the real part of f(z,w). Let u=(z,w) be a point of U
—u®. Let E,(¢) be the d-neighborhood of the end ¢ of N, (see Sect. 3, for defini-
tion) and let T;(e)=0E,(e) be the é-torus section of ¢, where §>0 is sufficiently
small. We may assume that F,=F(¢) is a simple framing on E¢) by (ii) of
Proposition 3.2. Let X be the closure of s{N, —E;(¢) —m) in F(N,), where s: N,
—m— F(N,) is the section defined by &,. Then X, is a 3-manifold in F(N,) with
boundary 0X =s(T;(e))UR, where R is mapped onto m by the bundle pro-
jection F(N,)— N,. We have

Ref(z,w)= | ReC———— (A
S(Ny—m) s(m) (1)
=lim ReC—— { 8.
60 X4 T s(m)

Now

1 1
Re C=?01 A 02 /\03 —4—7[261@,

where @ =0, A0,;+0,A 05,40, /\012. Hence

. 1
lim ReC—hmI 0 AO, A0, —lim | 4—nzd@

-0 X, -0 Xa 60 X4
1 1 1
=—vol(N)—lim O—\|—06,
n’ (M) 50 s(Ti(a)) 4n’ Ij<4”2

by Stokes’s theorem.
Let ¢y: ' xm— R be the diffeomorphism defined by

¥ (0, )= (f1(»): (cos v) 2 (y) = (sin v) f3(y),
(sin v) f,(y) +(cos v) f3(¥)),

where veS'=R/2zZ and yem and k,(y)=(f,(0),fo(").f3(»). Then y*6,(8/0v)
=y*0,,(0/0v)=0 (i=1,2,3) and $*0,,(6/0v)=1 as in the proof of Lemma 1.5.
The orientation of S xm is given by (f,, —0/¢v). Hence by calculations similar
to the ones in the proof of Lemma 1.5, we have

1 1
] Car e N AL LA
1
=57 ) 0

s(m)

where s: m— F(N,) is the section defined by «,.
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1 ~ .
We compute — [ — 6. Let N, be the universal cover of N, and let
P s(Tse) T
E;(c) be a connected component of the inverse image of E;(¢) of the covering

projection. Let d,: N,— H?® be a developing map of N,. By conjugation by an

element of PSL,(C), if necessary, we may assume that E,(¢) is mapped by d,

into the cylinder around the f-axis,
n
1 t{i——=) <o
0g co ( ) 2) e }

E(5={(V,ﬁ, ¢)EH3
where (r, B, $) is the polar coordinate of H? defined in Sect. 3. Set T,=0E;. Let
T, be the universal cover of T;. On T, we can put the complex coordinate z
=logr+i¢ for zeTa, where (r,¢) is the part of the polar coordinate of the
image of z in T; by the covering projection. Then Ty(e) is identified with the
quotient space of T, by the Z x Z-action generated by the translations by two
complex numbers

{logw(1 —z),2logz(1 —2z)}

by (I1I) at the beginning of this section [14]. Let I be the parallelogram span-
ned by these two complex numbers in the complex plane. Then I is a funda-
mental domain of this Z x Z-action. From the equations in the proof of Lem-
ma3.2, we have, on Tj,

14 sin?

s O= (—‘Lﬂ) (dlogr) A(d),
cos” 8

where s: T,—PSL,(C) is defined by the simple framing % (t-axis). Since Z,
=% (g) on E,(e), we have

1 1 (1+sin?B
- 1720=75 5| )dl d
srsion 470 4752( cos? 8 )}[ ogr Ad¢
_ | (1+sin25)
472\ cos’p

- 2[argz(1 —z)log|w({l —z)| —argw(l —z)log|z(1 —2)|].

As 6 —0, §—0 and from (1) above, we obtain
1
Ref (z,w) = vol(N,) @)
n
1
+5~2[arg z(1 —2)log|w(l —z)] —arg w(l —z)log|z(1 —z)[].
7

Now N,=A(z)u d(w) and vol(N,)=vol(4(z)}+vol(4(w)). There is a well-
known formula for the volume of an ideal simplex in H? (see [6, 13]), and we
have

1

1
— Vol(N,))=
n

= [arg(l —z)log|z| —Im [log(1 —t)dlog t]
n )

1 w
+—= [arg(l —w)log|w|—Im [log(l —t)dlog t].
T 0
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Using the equation (I) in Introduction, the second term of the right hand side
of (2) can be written as

1
2—{2[argzlog |1 —z| —arg(l —z)log|z|]

1
+§—2[argwlog|l —w|—arg(l —w)log|w[].
n
Summing up, we have

1 z
Ref(z.w)=—;Im [lglogzlog(l —2)— [log(1 —t)dlog t]
(¢}
1 w
+—1Im [%logwlog(l —w) —[log(1—t)dlog t]
n 0

— _Re (niz(R(z)JrR(w))).

Both sides of this equation are smooth functions on U, and hence the equality
holds at u®=(e""3, ¢*/3). By Proposition 5.1, f(u) is an analytic function on U.
Since two complex analytic functions with the same real parts differ from each
other only by an imaginary constant, it follows that

f&w)= = S(RE)+ R+

for some real constant ¢. By Lemmas 5.4 and 5.5, we have Imf(u°)=0. We
may calculate the value Re R(e™*)=nr?/12, and we have c=1/6. This proves
the theorem. q.e.d.

Here we insert the following subsection.

Subsection: Lens space.

Let (p,¢) be a coprime pair of integers. Let r and s be the integers such that
0<r<|p| and ps+qr=1. The Lens space L(p,q) is the quotient space of S* by
Z , action generated by {(z,,z,)=({z,,{"z,) for (z,z,), where {=exp2ni/p.
L(p,q) is naturally oriented and has the standard metric of constant sectional
curvature 1 as the quotient space of S*. We denote the image of (z,,z,)eS> by
the canonical projection by [z,,2,]. Thus [{z,,{"z,]=[z,,z,].

Let ¢, and ¢, be the embeddings D* x S* — L(p, q) defined by

pl/p ab''?
;b = s
puleb) [V;a12+1 V|a|2+1]

d) ( b) [ ab"/” bl/p ]
a’ = El El
2 ViaP+1 0> +1

where a and b represent complex numbers such that 0<|a|<1 and |b|=1. Then
L{p,q)=D?*x §* ugD2 x S', where g=¢;'¢,: 0D*xS*—>3D?*xS! is given by
g(a,b)=(a"7b°, a?b"), for (a,b)edD? x §*.
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Let S,={(z,,0)|lz,|=1}, S,={(0,z,)||z,]=1} and L,=S,uS, as before.
2
The action of { on §*—L, is written as {(0,y,t)= (()-{-;, w+12n, t). We de-
p

note the image of the point (6,v, ) in L(p,q) by [0,¥,t]. Let L,=S, US, be the
image of L, in L(p,q). Define the map

h: §*—Ly— L(p,q)—

1
by h(6,y, t)=[—9 1//—1—19 t]. Then h is an orientation-preserving diffeomor-

phism, and it extends naturally to a diffeomorphism h: §°—S, - L(p,q)-S,.
We identify L(p,q)—L, with S*~L, and L(p,q)—S, with S3~—S by h and h
respectively. With this 1dent1f1cat10n, the metric on L(p, q) is written on §*—L,

as
1 2 r 2 1 2
ds2=( —dt‘)) + (1/1 — <d¢+fd9)) + (_dt).
1/p p 271/ t{l —t)
Define the framing %, (p,q) on S*—L, by, for x=(6,y,1),

1 1
(. )(x) = (1/_1*—7 ~ 001001 3j00) 29/t —1) a/at)

cosmu(t) 0 —sinzmu()
< 0 1 0 )

sinwu(t) 0 cosmult)

0/0y,

where pu: [0,1]7-1{0,1] is the smooth function defined before the definition of
the framing %,. Then %(p,q) is orthonormal with respect to the above Lens
space metric. Actually % (p,q) is the orthonormalization of %, with respect to
that metric. Near §, = L(p, ),

1
oo, @)=~ == 2/ov, -
V1—t
and near S, < L(p, q)

1

L weje0 —rojoy), —29/t0 =) a/at)
i

1 1
Fo(p,0)= (s 0100, = (p3/20 ~r /o), 27/2(1 =) 0101,
Y1-t Yt
From this we see that % (p,q) has a special singularity at §, but it does not at
S,. We deform it slightly near S, and define the framing % (p,q) on S —L, as
follows: for x=(6,,t), setting Z(p,q)(x)=(e,(x),e,(x),e;(x)) and F(p, q) (x)
=(e}(x), €, (x), e5(x)), we define
e, (x)=(cos v(t)) ey (x) +(sin v(t)) e5(x)
e2(x)= —(sin v(0) ¢} (x) +(cos v(r)) €5 (x)

e;(x)=e5(x)

o/0y,
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where v: (0,1)>R/2zZ is a smooth map such that v(t)=0 for O<t<1—¢&(e>0
is sufficiently small), v(f)=v, (constant) for 1—(g/2)<t<1 and in this range
e,(x)=(cos vy) e} (x)+ (sin v,) €5 (x) has the direction along S,.

Lemma 5.6. The framing % (p,q) is an orthonormal framing on S*—L,=L(p,q)
—~L, having a special singularity at L,. Moreover s*Q=0, where Q is the
Chern Simons form on F(L(p,q)) (the SO(3) frame bundle of L(p,q)) and s: L(p,q)
—L,— F(L(p,q)) is the section defined by F(p, q).

Proof. By construction, # (p,q) has a special singularity at L,. Since L(p,q) has
the metric of constant sectional curvature 1, Q =010, where Q;; and 0, are
the curvature forms and the fundamental forms of L(p,q) respectlvely @i,J

=1,2,3). It is easy to prove that the Chern-Simons form vanishes for the fram-

ing
L o0 —rajon), 2v/ti =0 5/01?).

(—1—6/&#, _]ﬁ

/it

From this it follows that
£ _ r
#Q= d(n,u(t))/\d( Vi (dw+pd9)>
—dw(O) A d ((sin ()Y 1= %d@)

=0. q.e.d.

The tangent space at [z,,z,] of L(p,q) is identified with the tangent space
at (z,,z,) of $° and each vector in €* which is orthogonal to the vector
(z,,2z,)€S? is considered as a tangent vector at [z,,z,] of L(p,q).

Lemma 5.7. There is an orthonormal framing a(p,q) on L(p, q) such that at each
[z,,0]eS,,

a(p,q)=((iz,,0), (0,277, (0,iz}**7))
and at each [0,z,]€S,
a(p, 9)=((0,1z,), (z4**7, 0). (iz§**", 0))

L4(—1)8

d:
ana v 3

where /1=——1 +(=1)

2
Proof. Let o, and o, be orthonormal framings of L(p,q) defined on S, and §,
respectively. The only obstruction to extending «; U, to an orthonormal
framing on L(p,q) lies in the group H*(L(p.q), S, uS,, 7,(SO(3)). From the
cohomology exact sequence of the pair (L(p,q), S, US,) with Z,-coefficients, we
see that this group is isomorphic to Z,+Z,. If o, =((iz,,0), (0,27), (0,iz7})) at
[z,,0]eS, and a,=((0,iz,), (z%,0), (iz3,0)) at [0,z,]€S, for some integers m
and n respectively, then the obstruction is equal to ((m+1)mod 2, (n+ 1) mod 2).
This can be seen by considering the restriction of the obstruction to the Moore
spaces in L(p,q), M, ={z,=real>0} and M,={z, =real>0}. If g or r is even,
then p must be odd by gr=1modp, and the lemma follows. q.e.d.
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Lemma 5.8. Let a(p, q) be the framing on L(p,q) in Lemma 5.7. Then

oS, 2(p.q) = (£+i> 27
and
(S5, 2(p, 4)) = (§—+v) 27,

where A and v are as in Lemma 5.7.

Proof. By definition, ©(S,,2(p,q))= — | 0,,, where s: §, —» F(L(p,q)) is the sec-
s(S1) _
tion defined by a(p,q). Parametrizing as S, =[0, expit] (0<t<2nr/p), we have
2n/p

s*0,,=—(r+Aip)dt. Hence (S,,x(p,q)= j (r+/lp)dt=(£+i)2n. For
- 0
(S ,, a(p,q)), the proof is similar. g.e.d.

Using the framing % (p,q) on L(p,q)—L, and the framing a(p,q) on L(p,q),
we apply Theorem 1 in Introduction to the y-invariant of L(p,q). Then by Lem-
mas 5.6 and 5.8, we have

lig r |
1L0.0)= — (S+5+7+v)
Y 4
+3d(F (p, 9, 2(p, @)+ S(L(p, 4), 2(p. 9)).
In [2], the following has been proved,

Loa)= 'S cotXrcothy
n(L(p,q))= — Y cot-ncot—qn
Pr=1 p p

1
=-def(p; ¢,1).
p

Thus we obtain

Proposition 5.2. Let a(p,q) and F (p,q) be as above. Then
3d(F(p,q), x(p, 9) + 6 (L(p. 9), 2(p. 9))

1 1
== (€+f+z+v) +def(p: g, 1),
3% op p

This finishes Subsection.

Let (p,q) be a coprime pair of integers such that |p|=5 if |¢g|=1. Let (r,s) be
the pair of integers such that 0<r<|p| and ps+qr=1. Let u=(z,w) be the
point of U satisfying the equation (II). Then as before mentioned N, can be
completed to a closed hyperbolic manifold M, , by adjoining a closed geodesic
y to the end of N,. Let E, be a small tubular neighborhood of K such that
E,cE and E,nm=4¢, Where E is defined in Lemma 5.1. Let (m,[,) be a me-
rldean longltuode pair in T,=0E,. Then M, can be written as M M:DZ
x S1 U(S3 E,), where f: 6Dz xS1—+T =0(S*—E,) is a diffeomorphism such
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that f(éD* x 1) and f(1 x S') represent the homology classes p[m,]+¢q[!,] and
rim,]—s[l,] in H,(T,) respectively. The geodesic loop y corresponds to the
core curve 0 x S of the solid torus D? x S!. On the other hand, we have the
diffeomorphism ¢=¢, ud,: D*xS* | JD?*xS' > L(p,q) as in Subsection. Let

k:S3 —If1 - 53 —k(]fl) be the restrictiogn of the map & in Lemma 5.1. Note that,
since EoE,, k maps E, diffeomorphically onto a tubular neighborhood k(E;)
of S, and the pair (k(m,), k(/,)) forms a meridean-longitude pair of the trivial
knot S, =83 Identifying S —k(E,) with D?>x S' so that S, may be identified
with 0x S! and the pair (1 xS, 6D*>x 1) in dD*x S may form a meridean-
longitude pair of the trivial knot S, =S*, we may write the map k as a map k:
S*—E, »D?*xS' such that k(m,)=1xS", k(l,)=0D*x1 and k(m)=0xS".
Then the composition (k|0)f: dD?x S'—0D? x S' is isotopic to g=¢; ' ¢,|0,
and we may assume that (k|0)f =g. Define the map

H: M, =D*x5 Lf)(sﬁ—él)—»z)zxsl D2 xs!
g

by H'|D?x §'= the identity map and H'|S®>—E, =k. By composing with ¢, we
obtain a map H: M, ,~ L(p,q) such that H maps a neighborhood of yum
diffeomorphically onto a neighborhood of S, US, and H(y)=S, and H(m)=S§,.

Similarly the bundle map Tk of Lemma 5.2 gives a bundle map TH
T™, ,— TL(p,q) which covers H. TM,, and TL(p,q) have the orthogonal
bundle structures induced from the Riemannian metric on them. We may assume
that TH is a bundle map between these orthogonal bundles.

Now recall the construction of the framing # on N,—m=M, —yum
which has a special singularity at y um. &% was constructed as follows. At first
we pull back by Tk the framing % on S3 L, to N,—m. Next we orthonor-
malize it with respect to the metric of N,, and finally in a neighborhood of the
end of N,, we rotate about its e;-vectors so that it may become a simple fram-
ing there. Also recall the construction of the framing % (p,q) on L(p,q)—L,. It
was defined by rotating the framing %,(p,q) about its e;-vectors in a small
neighborhood of S, so that it may have a special singularity at §,. As noted
before, %,(p, q) is the orthonormalization of the framing %, with respect to the
metric of L(p,q). The map k in Lemma 5.1 maps the end of N, diffeomorphi-
cally onto a neighborhood of §, (S, is deleted) in a nice way (assumption (**))
and the two rotations about e,-vectors in the above two constructions can be
carried in the same way. That is, we may assume that (deforming fibre ho-
motopically if necessary) TH maps %, to % (p,q), TH(%,(x))=% (p,q)(H(x)) for
each xeM, , —yum.

We define the orthonormal framing «, on M, , as the pull-back of the
orthonormal framing a(p,q) on L(p, q) by TH TH(a,(x))=a(p,q)(H(x)) for each
xeM, ,. This is possible, for TH preserves the orthogonal structures on the
fibres.

Using the framings a,, &%, and x,, we apply Theorem 3.2 to the n-invariant
of M, .. We must calculate the terms in the right hand side of the equation in
Theorem 3.2. The term Im f(u) is given by Theorem 5.1.

Lemma 5.9. d(#,,a,)=d(F (p,q),«(p, q)).
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Proof. Let L(p,q) be the closure of s(L(p, q)—L,) in F(L(p,q)), where s: L(p,q)
—L,— F(L(p,q)) is the section defined by Z(p,q). Let 1\71 4, be the closure of
s(M —yum) in F(M, ), where s: M, ,—yuvm->FM, ) is the section de-
flned by %,. Then H 1nduces the map H M —+L(p, q). Iff L(p,q)—>S0(3) is
the dxfference map of #(p,q) and a(p,q) as in Sect 1, then f- H gives that of &
and «,. Since H is of degree 1, the lemma follows. g.e.d.

Lemma 5.10. 5(M, ,a,)=35(L(p,q), a(p,q)).

Proof. There is a decomposition

S e Y e B Y
—q s/ \-1 0 -1 0/7\—=1 0
where {d;};_, , are integers. For j=1,...,n, let 4; be the oriented D*-bundle
over the orlented 2-sphere sz whose euler class is d ; times the orientation class

of Sf Let W be the 4-manifold obtained by plumbing of A4, ..., 4, according
to the following weighted tree (see [8], §8),

@@

where each represents A;. Let D? (resp. D?) be a smooth 2-disc in S? (resp.
S2) which does not 1ntersect with A, (resp. A,_,) in the above plumbing. Let
D% x D? (resp. D? x D?) be the sub Dz-bundle of A, (resp. A,) over D? (resp.
Df). Then the boundary of W, oW, is diffeomorphic to the manifold D?
xS'| JD2xS*, where g: @D?xS'—0D?xS' is the map defined by g(a,b)

=(a“§bs, a?b") for (a,b)edD? x S* [8], here we consider the 2-discs as the unit
2-disc in the complex plane. We identify the curve dD? x0<=d(D? x D*)=S>
with the curve S, ={(z,,0)||z,|=1} in S Then the map k in Lemma 5.1 gives
a diffeomorphism k,: E, - dD? x D%, where E, is the tubular neighborhood of
the figure eight knot K in S* and k, maps a longitude curve in 0E, to dD? x 1.
Let W’ be the 4-manifold obtained from the disjoint union (W — D2 X Dz)uD4
by identifying each point x€E, =dD* with k,(x)edD?x D? c@(W D2 x D).
Then 6W’'=M,, ,. Using the maps k and Tk of Lemma 5.3, we obtain a map G:
W— W’ and a bundle map TG: TW’ —» TW which covers G such that G|D* =k,
G|W —D? x D*=the identity map, TG|TD*=Tk and TG|T(W —D? x D*)=the
identity map. Then G|0W’'=H and TG|TéW’'=TH. Now,

3(L(p, q), a(p,q)) =5 B, [W]—Sign(W)
and
3(M,, o 0,)=% B, [W'] —Sign (W).

Clearly Sign(W)=Sign(W’). Since the Pontrjagin class is functorial with re-
spect to the bundle map, B [W]=B[W']. q.ed.

Proposition 5.3
2
(i) t(p,0)= (§+/1) 2n— argz(l—2)

(ii) t(m,x,)—1(Mm, )= —v2m.
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Proof. (i} We use the coordinate (x, y,t) of D? x S* defined by a=x+iy and b

=exp it, where (x,y)eR? with x>+ y><1, 0<t<2n, aeD? and beS'. Let o be

the framing on D? x §' defined by a,=(0/0t,0/0x,3/2y). In the representation

M, =D*xS"{J(5*- E,), 0xS' represents y and we may consider t(y,u,),
S

where a, is the orthonormalization of «;, with respect to the metric of M,
Since the curve f(1 x S')<dE, represents the curve rm, —sl,, it follows from
{I1I) at the beginning of this section that

1(y, 000) =rargw(l —z) —sarg z>(1 —z)%.

Since pargw(l —z)+gargz?(1—2)*=2r and ps+qr=1, we have
2
(y,000) = —2n—5argz(1——z)

Let ¢=¢,U¢,: D*xS'[JD*xS'— L(p,q) be the diffeomorphism defined in

Subsection. Consider the gframing (¢~ Hxa(p,g). On ¢~ '(5,)=0xS", we may

write as (¢~ 1), o(p, ) (O =0, () v(t) for ted='(S;), where v: ¢~ '(5)>SO(Q)

(=S0(3)) is the difference map as in the proof of Lemma 1.1 in Sect. 1. Then

from the definitions of ¢, and a(p,q), it follows that the mapping degree

of v is A. The map H': MM:D2><S1U(S3—I§1)—>D2><S1UD2><S1 is the
7

g
identity map on D? x §'. Since «, is defined as the pull back of a(p,q) by the
bundle map TH, it follows that, on y=0x S, we may write as o, (t)= o, (t) v(¢)
for tey, where v is the above map. By the calculation in the proof of Lem-

ma 1.1, we have
T(V? (Xu)z'f('y, a0)+j‘2n

2
= (Z+/1) 2 ——argz(l—z).
P p

(i) On ¢=(5,)=0xS", (¢~ "), x(p, @) () =05() w(t) for tep™'(S,), where
w: ¢~ 1(S,)— S0(2)(=SO(3)) is the difference map. From the definitions of ¢,
and a(p, q), we see that the mapping degree of w is v. Since H'|(S* —E,)=k and
Tk=k, near m, it follows from the definition of «, and the construction of &
that TH’ (x,) is isotopic to of on H(m)=0x S' < D? x S*. This shows that, on m,
the mapping degree of the difference map of «, and «, is v. By the calculation
in the proof of Lemma 1.1, we see that t(m,a,)=1(m,x,)+v2n. qed.

By Theorem 5.1, Propositions 5.2 and 5.3, and Lemmas 5.9 and 5.10, we
have

1 n?
1 (T 1
. =1l 4} _
6nr(y,ocu) 3(p+ >+3pnargz(1 z),
Py fqa r 1
sd(F.0)+0(M, o)=3 E+E+ﬂ.+v +Edef(p;q,1),

—(t(m, k,) —t(m, )= —3 .

67
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Summing up these equations, by Theorem 3.2, we obtain Theorem 3 in Intro-
duction.
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