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Hecke algebra representations
of braid groups and link
polynomials

By V. F. R. JonEs

Abstract

By studying representations of the braid group satisfying a certain quadratic
relation we obtain a polynomial invariant in two variables for oriented links. It is
expressed using a trace, discovered by Ocneanu, on the Hecke algebras of type
A. A certain specialization of the polynomial, whose discovery predated and
inspired the two-variable one, is seen to come in two inequivalent ways, from a
Hecke algebra quotient and a linear functional on it which has already been used
in statistical mechanics. The two-variable polynomial was first discovered by
Freyd-Yetter, Lickorish-Millet, Ocneanu, Hoste, and Przytycki-Traczyk.

0. Introduction

This paper initiates the detailed study of representations of Artin’s braid
groups B, which arise from the Hecke algebras of type A, _,. There appears to
be no direct understanding of these representations so our approach will be via
generators and relations. The braid group B, has a presentation
(015, 0,.4]0;0;110; = 0;,,0;0; ., i = 1.2,...,n—2, 0,0, = 0,0, |i — j| > 2)
and the Hecke algebra H(q, n) of type A,_, has a presentation

(Brs-ves 8. 11g86=(q—Dg,+q, i=1...,n—1, gg,..8 =8 1881
i=12,...,n— 2, 8:8;= &8 |i — j| > 2), where q is a parameter. Our
attitude will be that g is a complex number which may take any value. Thus
for each g # 0, B, has a representation inside H(q, n) obtained by sending
o, to g,.

There seems to be no a priori reason why these representations should be of
interest but we shall show that in fact they are. For generic q it is possible that
they are faithful.

The geometric picture of braids gives relations with links in 3-space. We
shall see how two such relations are connected with linear functionals on the
Hecke algebras. The first is a trace defined, by Ocneanu, inductively from the
relations tr(ab) = tr(ba), tr(1l) = 1, and tr(xg,) = z tr(x) where x € H(q, n)
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and H(gq, n) is embedded in H(q, n + 1) by identifying the g,’s. The parameter
z is another complex number independent of q. The trace will be a two-variable
polynomial invariant of oriented links discovered independently by Lickorish and
Millet, Freyd and Yetter, Ocneanu, and Hoste ([14]). One of its specializations is
the classical Alexander polynomial of [2]. We refer to [22] for a treatment of it
from a different point of view.

The other linear functional is more difficult to define and lives on a quotient
of the Hecke algebra in which the relation

8i8i+18 + 881 1t8g 18 +tg +tg ,+t1=0

is satisfied. It corresponds to unoriented links via the theory of plats ([7]).
Remarkably, the invariant so defined is a specialization of the one coming from
the trace and was discovered first as an invariant of oriented links in [16]. This
second linear functional occurs in statistical mechanics as the partition function
in the Potts and “ice-type” models (see [4], [42]).

A topological interpretation of these invariants is lacking at present. In this
direction it would seem very important to understand the representations of the
braid groups in H(q, n) in a more intrinsic manner, in particular the meaning of
the parameters g and z. This might also show how to use the other Hecke
algebras (not of type A,_,), and their rich representation theory, in some field
related to knots.

While very few of our results will use the theory of von Neumann algebras,
it should be pointed out that they were the starting point of this work and
continue to motivate many of the results. A deeper understanding of subfactors
of finite index (see [17], [18]) will almost certainly clarify many of the topological
questions.

The author would like to single out Joan Birman among the many recipients
of his thanks. Her contribution to this new topic has been of inestimable
importance.

1. Braids and links

Braids are formed when n points on a horizontal plane are connected by n
strings to n points on another horizontal plane directly below the first n points.
The strings are not allowed to go back upwards at any point in their travel. The
braid group B, on n strings is the group formed by appropriate isotopy classes of
braids with the obvious concatenation operation. The n points may be supposed
to lie on a single straight line which gives rise to an obvious preferred embedding
of B, in B, ., and to a preferred set of generators called 0,, 0,, ..., 0,_; given
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by the following picture:

1 2 i i+1 n

\
| A

Ficure 1.1

One may easily convince oneself that the o,’s satisfy

(1-2) 0;0;110; = 0;110,0;,1>

(1.3) 0,0, = 0,0, if |i — j| > 2.

That (1.2) and (1.3) give a presentation of B, was proved by E. Artin. The
importance of Artin’s result for us is that, to construct a representation of B, it
suffices to find matrices satisfying (1.2) and (1.3). As a general reference on
braids, see [6].

Given a braid a € B, one may form the oriented link a, called the closure
of a, in a manner adequately described by the following diagram:

<3
S/B\—«

Ficure 1.4

A result of J. Alexander asserts that any (tame) oriented link is isotopic to the
closure of some braid, but attempts to exploit braids to study knots run into the
following serious problem: The representation of a link L as a closed braid is
highly non-unique. Fortunately, A. A. Markov found purely algebraic necessary
and sufficient conditions for braids @ € B, and 8 € B,, to have isotopic closures.
This is stated in terms of “Markov moves” as follows. A Markov move of type 1
is changing a« € B, to Baf~! € B, for any B € B,, and a Markov move of type
II is changing a« € B, to ac,*' € B,,,, or the inverse of this operation.
Markov’s theorem, whose first published proof appears in [6], is that if a € B,
and B € B,, have isotopic closures then there is a finite sequence of Markov
moves of types I and II which takes a to 8. Unfortunately, Markov’s theorem is



338 V. F. R. JONES

not easy to apply directly as the sequence of moves may be long and go through
several different braid groups.

There are more ways to obtain links from braids than by closing them as
above. The plat method is discussed in detail in Section 14 and recently more
general closures are being considered (see [11]).

2. The Burau representation

If ¢ is a non-zero complex number let Bforl <i<n-—1bethe n Xn
matrix

0
1
1—-1¢ t
1 0
1
0 .

where 1 — ¢ is the i — i entry. One may easily check that BiBi1B; = B 1B:Bi- 1
and B;B; = B,;B; if |i — j| > 2. Sending o, to B, defines the (non-reduced) Burau
representation of B,. It clearly leaves invariant the subspace of C" of all vectors
whose entries add up to 0 and on the quotient by this subspace a convenient
(n — 1) X (n — 1) expression is

— ¢t 0 1
0 0
-1 1 1
bl= 1 5 bn~l_ 5
. 1 -t
0 1 0 0 —1t
1
1
1 -t 0
b, = 0O —¢ 0
0 -1 1
1
1

2 < i < n — 2 where the diagonal — ¢ is in the i — i position.

These are the most simple non-trivial representations of the braid groups
and are of fundamental importance. Except when n = 2 or 3, it is unknown at
the time of writing if these representations are faithful, even for t = 2.

Burau recognized that his represention was related to closed braids.
He knew that if a € B, and ¢ is the reduced Burau representation then
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det(1 — Y(a)) is (1 + ¢t + -+ +t" ') times the Alexander polynomial of the
link & He showed this by connecting the matrix y(a) with a known way of
calculating the Alexander polynomial from a presentation of the fundamental
group of the complement of the link. In Section 7 we give a new proof of this
result from an entirely different definition of the Alexander polynomial.

For positive braids there is also a mechanical interpretation of the Burau
matrix: Lay the braid out flat and make it into a bowling alley with n lanes, the
lanes going over each other according to the braid. If a ball travelling along a
lane has probability ¢ of falling off the top lane (and continuing in the lane
below) at every crossing then the (i, j) entry of the (non-reduced) Burau matrix
is the probability that a ball bowled in the ith lane will end up in the jth. Thus
in particular every polynomial entry of the Burau matrix of a positive braid will
be nonnegative for 0 < t < 1.

One should think of the (reduced) Burau representation of B, as deforming
the fundamental representation of the Coxeter group of type A, _; to a pseudo-
reflection, since the Burau matrices of the generators o, have eigenvalues — ¢
with multiplicity 1 and 1 with multiplicity n — 2.

3. Representations of symmetric groups

A braid « defines in an obvious way a permutation on its end points. This
homomorphism from B, to S, simply corresponds to adding the relation 62 = 1
to (1.2) and (1.3). Thus it is to be expected that some family of representations of
B, will be related to representations of symmetric groups. (Note in particular
that putting ¢ = 1 in the (non-reduced) Burau representation gives the represen-
tation of S, as permutations of basis vectors of an n-dimensional space.) For this
reason we devote this section to a discussion of some features of the representa-
tion theory of the symmetric groups.

As always for a finite group, irreducible representations (called irreps) are in
one-to-one correspondence with conjugacy classes of the group, though not in a
natural way. Conjugacy classes of S, are indexed by partitions of n correspond-
ing to the periods of the disjoint cycles of the permutation. These can be
represented diagrammatically as follows.

partition: 3+2+1+1=7
diagram:
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The length of the rows in the diagram is made to be non-decreasing. We will call
such a diagram a Young diagram.

Thus irreps of S, are indexed by Young diagrams. An explicit expression of
the representation coming from a diagram is possible but will not be useful in
this paper. What we shall describe is how a given irrep of S, decomposes when it
is restricted to S,_;. In fact with some thought this rule suffices to construct the
representation inductively. It is very simple: Given an irrep 7 of S, with Young
diagram Y, its restriction to S.—1 is the direct sum of (one copy of) each
representation of S,_, obtained from Y by removing a node so as to obtain a
Young diagram.

Example 3.2. The representation HHTH  of S, restricts to the direct sum

of L and _”ﬂandEB:DofST

We can now build up by induction all the irreps of all the symmetric
groups. As this will be extremely important let us record the picture up to S..

X ﬁé_}i

E:D/ EE]ME}ZED (T

Ficure 3.3

One is to imagine this diagram continuing indefinitely downwards. The lines
connecting different rows represent the restrictions of representations. Several
remarks are in order:

Remark 3.4. There is an ambiguity in assigning diagrams to representations
created by the obvious row-column symmetry of Figure 3.3. To fix this problem
it suffices to do it for S,. We use (13 to represent the trivial representation of S,
and H the parity. On the representation level the row-column symmetry
corresponds to tensoring by the one-dimensional parity irrep of S,.

Remark 3.5. The dimension of the representation associated with a given
diagram is, by induction, given by the number of descending paths from the
initial O to the diagram in question. But there is a closed formula for the
dimension known as the “hook length” formula. We will need this procedure,



HECKE ALGEBRA REPRESENTATIONS 341

so here is how it works: record in each box its hook length, i.e. the number of
boxes horizontally to the right and vertically below the box in question, e.g.
for 71, the box marked x has hook length 3. The dimension of the re-

X

!

presentation is then n! divided by the product of the hook lengths, e.g.

211 51
dimension = 2—2'_5 =

6

EDE

Remark 3.7. The characters of non-trivial conjugacy classes may also be
calculated from the Young diagram. We record here the following fact which
was known to Frobenius: in an irrep of S, the trace of an n-cycle is non-zero if
and only if the diagram has at most one comner, i.e. is of the form and —n

then it is (— 1) al:

Remark 3.8. An irrep of S, corresponding to a rectangular tableau has the
property that, when restricted to S,_, it remains irreducible.

Remark 3.9. Every representation of S, extends uniquely to a representa-
tion of the complex group algebra CS, which is, like any complex finite group
algebra, semisimple. Thus Figure 3.3 can equivalently be considered as a
description of the group algebras CS, and the inclusions between them induced
by the inclusions of the symmetric groups. For instance,

CS;= C X M,(C) x C.
1 i B
B aa o

The irreps of S, define the simple components of CS,, and the lines of Figure 3.3
show how the simple components of CS, fit inside those of CS, .

4. Hecke algebras

The various generators o, of the braid groups are all conjugate, so that all
one-dimensional representations of a braid group are classified by non-zero
scalars. One could obtain all two-dimensional representations but we will see that
a much richer structure emerges if we try to describe all representations of B, in
which the ¢;’s have at most two eigenvalues. Writing g; for the image of o,,
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under such a representation we must have an equation of the form g Z+ag,+b
= 0 where a and b are scalars. It seems that two constants are involved but by
modifying g, by a fixed constant we may eliminate one. It is convenient to
express the relation as g? = (¢ — 1)g, + q (q a scalar). Let us call such a
representation quadratic.

Thus knowledge of representations of B, in which the g,’s have < two
eigenvalues is the same as knowledge of the algebra H(gq, n) with presentation
on generators g,, g,,..., g,_;, and relations
(4.1) g;=(q- g, +q,

(4.2) gi8i+18: = 8i+18:8i+1>
(4.3) g:8; = 8;8; if |i —j| > 2.

Now recall that the symmetric group S, has a presentation on s,,..., s, ,,
sP =1, 8;8,,18; = $;,18:8 1, s;8; = s;5; if |i — j| > 2. Imagine trying to re-
duce words on the g,’s and s;’s to words of minimal length. The point is that
relation (4.1) is as good as s? = 1 for this purpose. Thus a system of reduced
words on the s,’s for S, will furnish a basis for H(g, n), by simply writing g, for
s;. A convenient such basis is

(4.4) {(gilgil—l"'gilfkl)(giz"‘giQ—kZ)"'(gipgipfl"‘gip—kp)
l<iyp<ig< - <i,<n-1}.

We see that the dimension of H(g, n) is n!. (In fact one must also show that the
algebra does not collapse, but this is well established (see [12]). It would suffice
to find an expression for the multiplication law in this basis and prove associativ-
ity.)

But we can do much better than this. For if we put ¢ = 1 in (4.1) we see
that H(1, n) is the group algebra CS, which, as we noted before, is semisimple.
Now semisimplicity is an open condition; so if we change ¢ slightly from 1,
H(q,n) will remain semisimple. Not only this, but the whole structure of
H(q,n) and the inclusions H(q,n) € H(q,n + 1) (defined from (4.4) in the
obvious way) must remain the same under this deformation, at least for n not too
large, depending on how far q is from 1. We conclude:

TrEOREM 4.5. For q close to 1, the simple H(q, n) modules (or quadratic
irreps of B,) are in one-to-one correspondence with Young diagrams. Their
decomposition rule and hence their dimensions are the same as for S,.

The above arguments are somewhat imprecise but can be made good
without too much trouble. See [12], pages 54, 55 and 56.

In the same way that Figure 3.3 determines the representations of S, so it
determines the representations of H(q,n). Wenzl in [46] has written down
explicit and demonstrably irreducible representations of H(gq, n) for each Young
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diagram. Once equipped with these formulae one may dispense with all the
subtleties of the proof of Theorem 4.5, as there are sufficient representations to
show that dimq(H(q, n)) = n!. One is also able to make precise “sufficiently
close to 17, for the formulae of [46] only require one to be able to invert g and
1 — g* for the appropriate p. Thus the conclusion of Theorem 4.5 is true
provided g is not a root of unity or zero. We do not wish to imply that the roots
of unity are uninteresting. In fact they are probably of more importance than
other values and will occur often later.

The algebra defined by (4.1), (4.2) and (4.3) is called the Hecke algebra of
type A, _, since the defining relations fit into the Coxeter-Dynkin picture. They
arise in the study of representations of GL(n, q) where they define the central-
izer of the natural representation on the set of flags. Other Hecke algebras exist
for other Coxeter-Dynkin diagrams and it would be nice to know if any of the
ideas of this paper can be suitably modified for them.

We will always consider H(q, n) as embedded in H(q, n + 1) via (4.4) and
the representation of B, inside H(q, n) will be denoted , so that 7(g,) = g
We will often abbreviate H(g, n) to H,,

Note 4.6. The symmetry of Figure 3.3 corresponds to the automorphism
g, — qg; ' of the Hecke algebra in the obvious way.

Note 4.7. We decided in Remark 3.4 to let a Young diagram with one row
correspond to the trivial irrep of S, and a diagram with one column to the parity
irrep. When this convention is extended to g # 1, we find that the “trivial” irrep
of H(q, n) must be defined by g, — ¢ and the “parity” irrep by g, = — 1. This
agrees with note 4.6.

5. Ocneanu’s trace on H(q,n)

The following theorem is inspired directly from von Neumann algebras
where normalized traces are building blocks of the theory.

THEOREM 5.1 (Ocneanu [14]). For every z € C there is a linear trace tr on
U*_,H(q, n) uniquely defined by

1) tr(ab) = tr(ba).

2) tr(1) = 1.

3) tr(xg) = z tr(x) for x € H(g, n).

Proof. The first thing to observe is that the map C: H, ® H, ® u_ H,=
H,,, given by C(x ® y, ® y,) = x ® y,g,y, is an isomorphism of H, — H,
bimodules. This follows by considering the set (4.4) and noting that any word for
H(q,n + 1) contains g, at most once. Surjectivity is immediate and injectivity
follows from a dimension count.



344 V. F. R. JONES

Now we are free to define a linear functional inductively from the formulae
tr(1) = 1 and tr(xg,y) = z tr(xy) for x, y € H(q, n). The problem is then to
show property 1). By induction we may suppose it for a, b € H,. Now if Sisa
subset of an algebra A which generates it as an algebra, then to show that a
linear functional is a trace it suffices to show f(xs) = f(sx) for all s € S and
x € A. Applying this where S = H, U {g,}, we see that the only case which
does not follow trivially from the definition of tr is tr(g,xg,y) = tr(xg,yg,) for
x,y € H,. But by the remark at the beginning of the proof it suffices to consider
the four cases:

a)xeH, ,,ycH,_,

b) x = ag,_,b where a,b € H, ,andy € H, |,

¢) same as b) with the roles of x and y reversed,

d) x=ag, b, y =cg, d where a,b,c,d € H, ,.

Case a) is trivial since g, commutes with H,_, so that we need only consider
cases b) and d).

b)  tr(g.ag, \bg,y) = tr(ag,g, ,g.by)
= tr(ag, 18,8, ,by)
= ztr(ag?_ \by) (definition of tr)
= (g — 1)z tr(ag,_,by) + gz tr(aby)

and

tr(ag,_,bg,yg,) = tr(ag,_,bgly)

= (q — Vtr(ag,_,bg,y) + qtr(ag, ,by)
= 2(q — Dtr(ag,_,by) + gz tr(aby).

d) tr(g,ag,_,bg,cg, d) =2z tr(ag%_lbcgn_ld) (as above)

=z(q — Dtr(ag,_,bcg,_,d) + 2% tr(abed )
and
tr(ag, ,bg,cg, ,dg,) = z tr(ag,_,bg2_d)

= z(q — Dtr(ag,_,bcg, ,d) + z%r(abed). Q.E.D.

Remark 5.2. This proof differs from Ocneanu’s original proof. He used a
different basis for H(q, n) corresponding to a different section for the natural
homomorphism from B, to S,, which he called “layered” braids. The trace of a
layered braid is a very simple expression but it is more difficult to prove property
I). On the other hand, we have used the basis (4.4) and the expression for the
trace of one of these basis elements is quite complicated. It would be interesting
to develop the theory using the basis {C,} of [20].

It should be apparent from the proof that properties 1), 2), and 3) suffice to
calculate the trace of any element of H(gq, n). To emphasize this let us do a
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sample calculation, that of the trace of g,g,g,g, which is of minimal length in
the braid group:

tr(g,g,858,) = tr(glg.g;) (property 1)

ztr(glg,) (property 3)

z(q — Dtr(gag,) + 2q tr(g,)
= (2%(q — 1) + 2q)tr(g,)
=2z3(g—-1) + z% (properties 3 and 2).

But another method of calculating tr is available. We know that the Hecke
algebra is a direct product of matrix algebras, indexed by Young diagrams. The
trace of Theorem 5.1 will be determined by its restrictions to these matrix
algebras and a trace on a matrix algebra is necessarily a multiple of the usual
trace. Thus if we know the scaling factors, called “weights”, associated with
each diagram we may calculate the trace of any element of the Hecke algebra by
decomposing it according to the matrix algebras and taking the weighted sum of
the traces.

The weights have been calculated by Ocneanu. They are Schur functions as
we shall now describe (see [27]). Note that, given the solution, one only has to
verify two things: first that the weights do indeed give a well-defined trace, i.e.
the restriction to H(gq, n) of the trace defined on H(gq, n + 1) by the weights is
correct, and second, that it satisfies the Markov property tr(wg,) = z tr(w) for
w € H(q, n). For this see [46]. We shall content ourselves simply to give the
answer.

If Y is a Young diagram let 7, denote the ensuing irreducible braid group
representation. We must start with a Young diagram Y and specify a function
W, of q and z which gives the trace of a minimal idempotent in the simple
component of H(gq,n) specified by that Young diagram. First of all, define
S(gq, z) as follows (wWhere w = 1 — g + z): superimpose the Young diagram on
the following diagram

w—z w— gz w— g%
qw — z qw — qz qw — g%
qw — z qw — qz

Ficure 5.3
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and let S(q, z) be the product of the terms covered by Y. For instance, if
Y = H4" then

$(q,2) = (w — z)(w - gz)(w — ¢%)(w — ¢%)
X(qw — z)(qw — qz)(q*w — z).

Now define Q(q) as follows: First fill in the hook lengths as if calculating
the dimension of the irrep of S, corresponding to Y. Now replace each integer
appearing, say m, by 1 — q™. Then Q(q) is the product of these terms. For
instance if Y is as before we form

[b—CoJOD

and Q(q) = (1 = g)(1 — ¢*)(1 — ¢*)(1 — q°)(1 — q)(1 — ¢°)(1 — q). The
promised formula is then

(5.4) Wy (g, z) = S(q,2)/Q(q).

If Y is a Young diagram let tr, be the trace on the Hecke algebra obtained
by evaluating the usual trace (sum of the diagonal entries) on the image of a
Hecke algebra element in the representation . Then the significance of (5.4) is
the “Fourier transform” formula:

(5.5) tr(x) = %:Wy(q,z)try(x).

Thus to calculate Ocneanu’s trace of a word on the g,’s in this fashion we
need only explicit matrices representing the g.’s for each my. The explicit
formulae of [46] are not well adapted for calculations as they involve square roots
of certain polynomials. Much better from this point of view is the paper of
Kazhdan and Lusztig ([20]) which gives a method of calculating, in principle, an
extremely simple form of the g,’s in terms of what they call W-graphs. But a
simple way to go from a Young diagram to a W-graph seems to be lacking.

There should be analogues of Ocneanu’s trace for Hecke algebras other than
those of type A ,. Some work has been done in this direction by B. Seifert in
[39].

For knot theory it will be more convenient to change variables. We
will use A = (1 — g + z)/qz = w/qz, so that z = — I-9)/1 —Ag), w=
— Ag(1 = q)/(1 — Aq). The only change to the formula is that S(q, z) becomes
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S(g, — (1 — q)/(1 — Aq)) and is obtained by superimposing the Young di-
agram on the following version of Figure 5.3:

1-Aq q-Ag q> - N\gq

1 - Ag? g — A\g® q°> — Ag®

1 - Ag® g —Ag® q°> - Aq°

1 - Aq* : :
Ficure 5.6

and then multiplying by (1 — q)/(1 — Aq))", there being n nodes in the Young
diagram. Let R, (q, A) be the product of the relevant terms in Figure 5.6, before
multiplying by ((1 — q) /(1 — Ag))".

Note 5.7. A final note is in order. Let us relate this section to Section 2.
If Y(o;) are the reduced Burau matrices it is easy to check that (— y(o,))% =
(t = D(— ¥(0;)) + t so that sending g, to — y(o,) gives a representation of
the Hecke algebra with g = ¢. Since the reduced Burau representation is
irreducible for generic ¢, this Hecke algebra representation must correspond to
one of those already defined. Either by looking at g =1 or by counting
eigenvalues (see Lemma 9.1) we deduce that, for the n-string braid group, the
representation has the following Young diagram: Hﬂ

(n nodes)

6. A two-variable knot polynomial

The key observation here is the similarity between condition 3) of Theorem
5.1 and the Markov moves of type II of Section 2. We call such traces Markov
traces. The most natural way to obtain the invariant is to normalize the g,’s so
that both type II Markov moves affect the trace in the same way; so let  satisfy
tr(0g,) = tr((6g,) " '). Then

92 =tr(g;!)/tr(g,) = tr(g/q — (1= 1/q)) /2= (1 — q + 2) /qz.

This is the quantity we have called A. Thus tr(YAg,) = tr(YAg,)”") and
tr((VAg;) = 2/A = — VA(1 = q)/(1 — Aq).

It is now immediate that if we represent B, by m,, m\(0,) = VA g €
H(q, n), then the function of q and A given by

(— (1-2Aq)/VA(1 - q))n_ltr(wx(a)),for a €B,,
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depends only on the link & The representation 7 (7(o,) = g;) has the ad-
vantage of only involving the variable g; so we define:

Definition 6.1. The two-variable invariant X, (g, A) of the oriented link L
is the function

Y n—1
X (g, N) = (— JXIT"(,)) () ()

where a € B, is any braid with @ = L, e being the exponent sum of a as a
word on the o;’s and 7 the representation of B, in H(g, n), o, — g,.

Proposition 6.2. To each oriented link L (up to isotopy) there is a Laurent
polynomial P, (t, x) in the two variables t and x such that, if X and q satisfy
t=VAq, x= (/g — 1/ /q) then P(t, x) = X,(g, \). Moreover, P, (t, x) is
uniquely defined by the “Skein rule”: If L., L_ and L, are links that have
projections identical, except in one crossing where they are as in Figure 6.3:

XA R

L, L_ L,

Ficure 6.3

then t"'P; —tP, ==xP, .

(Note: This two-variable knot polynomial was discovered by Lickorish and
Millett, Freyd and Yetter, Ocneanu, and Hoste in [14]. Another common choice
of variables is [ = it ™!, m = ix where i2 = — 1.)

Proof. We begin by investigating the behavior of X under skein moves (see
Figure 6.3). Note that if one chooses a single crossing of an oriented link
projection one may turn it into braid form so that the crossing becomes a term o,
(or o, ' depending on whether it is a positive or negative crossing) in an
expression of the braid as a word on the ¢,’s. Thus after a Markov move of type I
we may assume L, = ac’, L_ = &and L, = Zx_;i for some a € B,. By (4.1) we
see tr(7m(ao?)) — q tr(7(a)) = (q — Dtr(7(ao;)). Let the exponent sum of a be



HECKE ALGEBRA REPRESENTATIONS 349

e and multiply this equation by T(VA)**!/ /q with

T=(-(1-Ag)/A(1-q)" "
Then

T +2 2 _ €
—\/E—\/X_(\/X) tr(7(ao?)) — Jg A T(VX) te(7(a))

= (Ja = 1//@)T(R)" (o)
so by the definition of X, t7'X; — X, =X,

That the skein relation suffices to calculate P, (t, x) uniquely follows from
an induction implicit in [13] (see also [22]). This induction associates a Laurent
polynomial in ¢ and x with any skein decomposition of L. But provided we can
find VA and /q with t = YA /g and x = g — 1/ /q , the value of P, (¢, x) can
only depend on L since, as we have seen, X; (g, A) is a link invariant and by
induction they are equal. There is an open set of values of x and ¢ for which VA
and \/E exist; so since P, (x, t) is a Laurent polynomial, it can only depend on L
and not on the skein decomposition.

Notes. 1) It is interesting that the values of t and x which do not admit
corresponding q and A values define precisely the specialization of P, which is
the Alexander-Conway polynomial. See Section 7.

2) We have deliberately chosen to use the notation VA rather than defining
things in terms of another variable whose square would replace A. This is
because X is more than a Laurent polynomial in VA —it is a power of VA times
a Laurent polynomial in A. So if L has an odd number of components the square
root disappears.

Example 6.4. The (right-handed) trefoil is given by the closure of the braid
o} € B,. Thus

X (. N) = (— —li—xq—)mr“’tr(gf)-

VA(1 - q)
But by (4.1), g3 = (¢> — g + 1)g, + q(g — 1) so that
Al =X 1-
%lan) = (522 0 - a0 0 52 a(a - )

=A(1+ ¢ — Aq?)

= (Aa)((fa - 1//a)" + 2 - rq)

= (2t2 — t*) + t%2
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Example 6.5. The figure-8 knot is given by the closure of the braid
0,0, ‘0,0, ! € B,. So
_ (1-2xq)
A1 - q)

(1-Xq)* [1 1
——tr| — + —
}\(1 _ q)2 nglgzglgz g

X,(q,7) tr(g,e5 2,25 ")

1 P
; —1)gig,

1 2
- - 1) g?)
q

, (1-q)

gig, — Q(T_—Aq—)tr(g‘f) +(1 - q)ztr(g%))

1
+_
q

1
; - l)glgzgl +

(1-Xg)*
Nl —ar”
q°\(1 - q)

_ I;i_x(_ te(g?) —— q" +(1-Ag)(1—A\g— 2)tr(g%))

1 +q2—}\q2)

1 1—g 1—)\q(
g*A\1—-Ag 1—g

(1-q)

- (1= 2a)(1 +2q)| T

+4q|| (by(6.4))

1
= = (1+¢*=Xg>— (1 + Ag)(1 — g + ¢°> — A\q?))

q°\

1
= q—A(l—A(l—q+qz)+>\2q2)
__11 2( .2 1 2) — 1 2 1 2
—-t—-z-( —t3(x*+ 1) +t})=—1—x t o

Example 6.6. The n-component unlink is given by the closure of the braid
1 € B, so that

1—-Ag \"!
X (q.A) = (— m)

and

t — tl)n—l

X

P (t,x)= (

The above calculations are probably no simpler than those of a skein induction
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but they illustrate an important point. If one is interested in closed braids for a
fixed B,, the invariants can be computed quite rapidly no matter how many
crossings there are. Just write the braid as a word on the o,’s and expand the
product in terms of the basis (4.4). The number of algebraic operations will be
proportional to the length of the word. In practice the space required for the
basis elements is quite large and 7 or 8 strings seems to be as far as one can go on
a present-day average-sized computer. But this already allows one to compute
the invariant for many knots and links whose computation is impossible by the
direct skein theoretic method for which calculation time grows exponentially
with the number of crossings. A program such as the one outlined above has
been implemented by Morton and Short who have thus been able to answer in
the negative the important question: Is the invariant of & determined by the
characteristic polynomial of the Burau matrix of o?

Example 6.7. Connected sums. We claim that if L, and L, are oriented
links then Xy 2,(q,N) = X, (q, A) Xy, (g, A). This is regardless of which com-
ponents of L, and L, one chooses to perform the connected sum.

The claim follows trivially from two facts: (i) If L, = &, «; € B,, and
L, = @&,, ay € B,,, then L#L, = a,2" !(a,) € B, ,, where X is the shift map
on the inductive limit of the B,’s, 2(o;) = 0,,,. For instance, the connected
sum of the figure-8 and the trefoil is @ where a = 0,0, '0,05 03 € B, (see [6]).
(ii) If w, isawordon 1, g,,..., g, and wyisawordon 1, g,,,,..., g, then
tr(w,w,) = tr(w)tr(w,). The easiest way to prove this is to note that x —
tr(xw,) defines a non-normalized Markov trace on H,, ,(q). Normalizing it one
obtains the result by the uniqueness of a Markov trace. See [22] for the skein
theoretical proof.

Example 6.8. Reversing the orientation. Reversing all the arrows in Figure
6.3 preserves the diagram; so by (6.2) we may conclude that P, = P,, if L’ is the
oriented link obtained from L by reversing all the orientations. Note though that
if the orientations of individual components are reversed, P, may change
drastically. Compare this with Corollary 13.16.

The result P, = P;, can be seen on the Hecke algebra level as well. The
symmetry of the presentation of the braid group (1.2) and (1.3) implies the
existence of an antiautomorphism 6 of B, which sends o; to o;. It is geometri-
cally trivial that 6(a) = (&)". By formulae (4.1), (4.2) and (4.3), 8 also defines an
antiautomorphism of H(gq, n) which preserves the trace (uniqueness of a Markov
trace). Thus X; = X,..

This result may be construed as a negative result about the polynomial: It
cannot detect (at least in any simple way) the difference between two orienta-
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tions of a knot. But it is to be expected that a more refined analysis of the
Markov relation in the Hecke algebra will be more successful. One might try, for
instance, to let q and z be elements of a finite field so that #(B,) is finite for
all n.

Example 6.9. Mirror images. One of the useful features of P, is that it is
very sensitive to taking the mirror image of a link.

If L is an oriented link let I. be the oriented link obtained by viewing L in
a mirror or equivalently, reversing all the crossings in some projection of L. It is
obvious from Figure 6.3 that P; (¢, x) = P,(t~}, — x). We shall show this using
the Hecke algebra. Although this method is less easy, it is quite revealing. If
a € B, then the mirror image of & is §(a ') € B, but as we have seen we may
take a~' € B,. Thus if L = & and e is the exponent sum of « then

(1 —Aq)

Xl:(q,}\) = (— m) _ (\/X)_etr(ﬂ(a_l)).

ProposiTion 6.10. X;(q,A) = X, (1/q,1/)).

Proof. Let f(q,A) be tr(m(a)). Write 7(a) as a product with each g;
written (g + 1)e; — 1 where e, = (1 + g,) /(1 + q). The e, satisfy

(6.11) el =e,

(6.12) eeie—4/(L+q)e, = e.ie,,— q/(1+q)e,,
(6.13) ee;=eje; if |i—j >2
(6.14) tr(e,) = all ~ 1)

(1+4q)(1-Aq)’

Then 7(a ') will be the same expression on the e;’s simply with g replaced by
q~'. Both the expressions q/(1 + q)2 and g(1 — A)/(1 + g)(1 — Aq) are in-
variant under the change of variables ¢ — 1/g, A = 1/A. Moreover, relations
(6.11), (6.12) and (6.13) are equivalent, for q¢ # — 1, to (4.1), (4.2) and (4.3), so
they suffice to calculate the trace of any word on the e,’s, which will be a sum of
powers of g times powers of g(1 — X)/(1 + g)(1 — Ag). Thus tr(7(a) }) =
f(1/q,N) = f(1/q,1/X). Finally, (1 — Aq)/ VA (1 — q) is invariant under the
change of variables and (VA)° becomes (VA) ¢, which completes the proof.

Q.ED.

Scholium 6.15 (Morton, Franks-Williams [28], [47]). If |e| > n — 1, & is
not amphicheral (a € B,).

Proof. We saw in the proof of Proposition 6.10 that tr(7(a)), as a function
of g and A, has a finite limit, for fixed q # 0, when A — 0 (relation (6.14)).
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Suppose ¢ > 0 and e > n — 1. Then as A — 0 we see that X,(g, A\) — 0. But
since X, is a Laurent polynomial in yA, this means that only strictly positive
powers of A can occur; hence X; # X;. If e < 0, use the same formula for
X;. Q.E.D.

Note 6.16. L. Rudolph has used this result to show that the figure-8 knot
cannot be represented by a quasi-positive braid, i.e., one which is a product of
conjugates of a,’s ([38]).

Note 6.17. Bennequin had shown in [5] that & is non-trivial whenever
le] > n — 1. Scholium 6.15 gives a rather different proof of this.

Scholium 6.18. Let a € B, and let q . and q_ be the orders of the poles at
infinity and zero respectively in Py(q, \). Let e, be the sum of the positive
exponents of the o,’s in a and e_ be the sum of the negative ones. Then e, > 0
impliesq, <e,— 1, ande_ <0 impliesq_ <e_ +1.

Proof. Fix A and let g — 0. The expression (1 — Aq)/VA(1l — q) of
Definition 6.1 has a finite limit as ¢ — 0. Each of the terms in tr( 7(a)) is either
1 or of the form q“tr(w) where w is a product of the ¢’s and a <e,.
Calculating the trace of w using the usual inductive procedure will yield
a sum of non-empty products of traces of e,’s multiplied by various powers of
q/(1 + q)? using (6.10)—(6.13). All such terms will go to zero as ¢ — oo at least
as rapidly as 1/q. Thus the most rapid growth possible at infinity in q is g+ !
(e, = 0) provided e, > 0. The same argument applied to a~! yields the full
result. Q.E.D.

7. The Alexander polynomial

The Alexander polynomial of a link L will, for the purposes of this paper, be
defined as the specialization A, (t) = X, (¢,1/t) = P,(1,Vt — 1/ Vt). That such
a polynomial exists follows from Proposition 6.2. From Definition 6.1 of X, (g, A)
it would appear that one cannot calculate the Alexander polynomial using the
trace of Hecke algebra representations. Indeed for these values of the parameters
tr(g;) does not make sense. But we will show that if one uses the weighted sum
of the traces as in Section 4, the singularity at A = 1/q disappears and one may
evaluate A;. A bonus of this approach is an alternative proof of the fact that A is
given by the Burau matrix.

If Y is a Young diagram, the contribution of Y to X,(q, A) (for |g| # 1,
A#1/q)is

trace( 7, (a))

ol ) ) e
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where Ry (q, A) is as calculated from Figure 5.6, and “trace” is the usual trace,
sum of the diagonal elements. Since the term in the top left corner of Figure 5.6
is 1 — Ag, the limit exists as A = 1/g; so we may evaluate AL. (Here « € B,,
& = L, e = exponent sum of a.) But we also see from Figure 5.6 that if Y is not
of the form of Figure 7.1

Ficure 7.1

with 8 + y + 1 = n, the contribution is zero since the (2, 2) position of Figure
5.6 is ¢ — q>\. We find that for Y as in Figure 7.1, the term

(1 —q/1 = Xq)Ry(q,1)/Qy(N)
(1-4)1-4¢%)...(01-g*)(1-q)...(1-q*)
(1-q)...(1-¢)(1-4¢*)(1-4¢°)...(1-¢*)(1 - q")

Thus we obtain the formula

1 (e—n+1)/2 l_t n—1
t) - -y (-1 trace(wy(a))

B 0

(72) A1) = (- 1)"*(

We shall now identify the representations 7y, up to sign, with the exterior
powers of m, which we shall call 7,. Consider f (— A 'APq,(0,). Since
m,(0,) has elgenvalues gand — 1, f; does also; so f> = (¢ — 1)f, + g. Thus the
assignment p(g;) = f; defines a representation of H(q, n). To see how many
irreducible representations it contains it suffices to look at the case g = 1, i.e.
representations of the symmetric groups. But then we know that 7, is the tensor
product of the signature representation of S, with the (n — 1)-dimensional irrep
of S, contained in the n-dimensional permutation representation. But it is well
known that the Bth exterior powers of this representation are irreducible and
have Young diagram Y, for some B’. So p is irreducible and corresponds to a
Young diagram Y. To find out the value of B’ it suffices to count the
multiplicities of the eigenvalues g and — 1. One deduces that p is equivalent to
Ty, (see Lemma 9.1).
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Thus we can rewrite (7.2) as

(1 (e—=n+1)/2
@3 a0-175)
X L tn Y (= )P (= 1) Ptrace( AP ().
-t 5

But by (5.7), up to equivalence of representations, m,(0;) = — {/(0;), ¥ being
the reduced Burau representation. So (7.3) becomes

1 )(e—n+l)/2( 1-—1¢

T4 A= (077 L

) %( — 1)*trace( A% (a))

or

3.0 = (= 10 7 = ot = (e

This also makes clear the normalization of the Alexander polynomial as calcu-
lated from the Burau representation. For this see also [8].

8. Special formulae for closed 3 and 4 braids

For 3 and 4 braids, Figure 3.3 and Notes 4.6 and 5.6 show that almost all
the Hecke algebra representations are essentially Burau representations. (Indeed,
even the two-dimensional irrep of B, corresponding to the Young diagram Bais
the composition of the irrep (3 of B, with the map o, — 0, 6, = 0,, 0; > 0, of
B, onto B,). Thus by Section 7 we expect close relationships for closed 3 and 4
braids between the polynomials of Section 6 and the Alexander polynomial. We
shall derive these relations for knots only, leaving the case of links up to the
reader.

8.1. Closed 3-braids. The Hecke algebra H(gq,3) is, for generic g, the
direct sum of three components corresponding to Young diagrams (111, aa and
a. So (5.5) becomes, for x € H(q, 3),

1-gq )3[(1 ~Aa)(g ~A9)(q* ~Aq) (%)

1-Ag)| (1-¢)(1-¢*)(1-¢°) OB

(1 = Xg)(1 - Aq®)(q — Aq) .
1-90-90-¢) &

(1-Aq)(1 - Ag®)(1 ~Aq?) (x)
1-a)1-¢)1-¢°) H '

(82)  tr(x) = (

(x)
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Now if & € B; has exponent sum e, and & is a knot, then e is even. Also the
reduced Burau representation v is two-dimensional, so that we have

(8.3) det(1 — ¢(a)) = 1 — trace(y (a)) + det(¢(a)).

Moreover, det y(a) = (— q)° so that by (7.4), trace(y(a)) =1+ g°—
q“*(1 + g + g7")A;(q). Combining (8.3), (8.2), (5.7), (4.7) and (6.1) we obtain
A-N(g-2)  (1-2)(1-2rg?)
1-)1-¢°) T1-q-¢)

(8:4) Xi(q,A) = ()" g

x(1+q°—q%(1+ q + q7*)A4(q))

(1 -2g%)(1 - 2g?)
(1-4%)(1-4q%
In particular A; and e determine X,(g, A\) and hence P,(t, x). Birman

shows in [8] that A; and e do not suffice to determine the type of the knot &.
We invite the reader to try out (8.4) on a few test cases.

8.5. Closed 4-braids. For closed 4-braids, P; is no longer determined by e
and the Alexander polynomial but there is a relation for knots which is some-
times useful. Note now that for « € B, e will be odd and there will be a sign
difference between y/(a) and 7(a).

Let w,,..., w5 be the Weights for Y = orm, H=. 8- and
» respectively, using (4.6), (4.7), (5.7) and (5.5), and (6.1) becomes, after
multiplication by A —¢/2,

1 )<e—l>/2 1 ( 1-\q

(8.6) (X X&(q,}\) =— X =4 ) (qul + qur(l[/(a—l))wz)

+Tr(7TEE (@) w; — Tr(y(a)) w, - Ws.

Doing the same for a ™! and using Proposition 6.9 we obtain

11 1{1-Aq\®
(e+1)/2 i
(8.7) (A) x&(q,}\) A(l_q)

X (g7 + Ty (o) s + Trl gy ()

— Tr(y(a 1)) w, — wy).
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Multiplying (8.7) by q° and adding we get

(e—1)/2
@3)(%) xdmx)+(M@HwX&%,%)
— g \3
w2t 0+ - w00 + g9t

+w3Tr(7TEB(a) + qevrBa(a’l)) - ws(1 + ¢°)].
But the coefficient of w; vanishes since 7 is two-dimensional and one may

easily check that det( a2 (0;)) =— g so that det( 7783 (@)) =(—q)°. And forany

2 X 2 invertible matrix A, Tr(A) = det(A)Tr(A™1!).

Also for any invertible 3 X 3 matrix A we have det(l1 — A) =1 —
Tr(A) + det(A)Tr(A ') — det A, so that we may rewrite the right-hand side of
(8.8) using (7.4) as (remember e is odd and det ¢(o0;) = — q),

1(1—)\q

69 5|7,

A ) [(wl_wS)(l "'qe) + (wz_w4)

X(L+q°— (1+q+q%+q°)q° ¥2,(q))]
Finally, using Figure 5.6 we obtain, for a 4-braid knot &, a € B,,

1 )<e~1)/2

11
(8.10) (X X(q,}\)+}\“”“)/2le( )

q’ A
-1
A=) ¢ - qY)
X[{a®A = A)(g = 2)(g*> = A) = (1 = Ag®)(1 — Ag*)(1 — Ag*)} (1 + ¢°)
+q(1 +q+¢*)(1 - Ag>)A - MN)(q*> - 1)1 + Aq)
X{1+q°~(1+q+q*+4¢*q"“ ¥%;(q)}].

This rather complicated formula has a more manageable form in certain special-
izations (see §12).

Formulae (8.4) and (8.10) lend some weight to the possibility that the
exponent sum in a minimal braid representation is a knot invariant.

9. Torus knots

We shall calculate X, (g, A) for torus knots. It will be clear from the
calculation how one can also write down a formula for torus links but the answer
is already rather complicated for knots, so we shall content ourselves with that.
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A torus link of type (m, n) is the closure of the braid (0,0,...0, )™ € B,
(by various symmetries we may suppose m,n € N). The link is a knot if and
only if m and n are relatively prime. A torus link of type (n, n) is represented
by A* = (6,0,...0,_,)" € B,. The calculation of the polynomial for torus knots
relies heavily on the easy fact that A? is in the center of B,.

Let us assume that ¢ € R*. This allows us to use the structure of H(gq, n)
outlined in Section 4. If Y is a Young diagram with n nodes, let 7y be as usual,
let h; = my(0;) and ¢, = (1 + h;) /(1 + q) and let d = dim .

LEmma 9.1. We have e? = ¢; and the rank of the idempotent e; is the
number of descending paths on Figure 3.3 from the diagram (M to Y. In
particular, for Y, of Figure 7.1,

rank(e,) = (’B +3_ 1).

Proof. All the generators o, € B, are conjugate in B, which means that all
the ¢;’s have the same rank (= trace) in 7. So it suffices to calculate the rank of
e,. But the lines in Figure 3.3 denote the restriction of the representation B, to
B, ). Thus the assertion about rank(e;) as the number of descending paths
follows by induction and our convention that [IJ corresponds to the representa-
tion 7 (0,) =q so that 7T(e1) = 1. The explicit formula is obtained
by counting. Q.E.D.

LEMMA 9.2.

dim(m,,) = (Yif’*).

Proof. Use the hook length formula. Q.E.D.

Lemma 9.3. If Y is a Young diagram with dim 7, = d and rank e =r,
then

WY((olaz...on_l)") = q’"("_l)/didﬂy.

Proof. The representation =, is irreducible and (0,0,...0, ;)" = A% is in
the center of B,; so its image is a scalar. Moreover, since h, = ge, — (1 — e;) it
follows that det(h,) = +q’, hence det(w(A%) = q™" D, Thus my(A2) =
wgq™ "~ D/4 for some dth root of unity w. But by [46] or [20] we know that one
may write down explicit formulae for 7, (o,) which depend continuously on g.
Thus the root of unity « varies continuously with g; so we may evaluate it by
putting g = 1. But then 7, is a representation of S, and Ty(0,...0,_;)
represents an n-cycle, so that w = 1. Q.E.D.

Remark. 1t is also clear from the proof of Lemma 9.3 that m(n — 1)/d is
an integer.



HECKE ALGEBRA REPRESENTATIONS 359

LemMa 9.4. The matrix g~ "~ Y/97,(6,... 0, ,) is diagonalizable and has
the same eigenvalues, with the same multiplicities, as an n-cycle in the
representation of S, corresponding to Y.

Proof. By Lemma 9.3 we know that ¢ """ Y4z (6,...0, ,) is an nth
root of unity so it is diagonalizable. The multiplicities of the various nth roots of
unity, w, as eigenvalues, depend continuously on g since they can be expressed
in the form Trace((1/n)X}-jw'my(0,...0,_,)"). As before they can be evaluated
by putting g = 1. Q.E.D.

CoroLLARrY 9.5. If m and n are relatively prime and Y gives an irrep of S,
for which the trace of an n-cycle is zero, then trace(my(o,...0, ,)™) = 0.

Proof. All ncycles in S, are conjugate; so if A is a matrix representing an
n-cycle in the irrep of S,, trace(A™) = 0. But by Lemma 9.4, 7y(0,...0, ) is
conjugate to a scalar multiple of A. Q.E.D.

The following formula now follows immediately from Remark 3.7, (5.5) and
Figure 5.6 (remember (m, n) = 1):

96) tr((g...g..1)")= X (=17

y+B+1=n [Y]‘[B]'(l - qY+B+1)
a, B>0

qY(Y+1)/2

x(l‘q)"ﬁ<¢—xw

1- Aq i=—y
(we have used the fact that the trace of 7y(0,...0,_ ;)™ is (— 1)7g" ("~ Dm/d),
From (9.6) and Definition 6.1 we get the following:

THEOREM 9.7. Let K be a torus knot of type m, n. Then

1 -q A(n—l)(m—l)/2 Z 8 5
X q’ A = ( n) (_ 1) q m+'y('y+l)/2
K( ) l1-gq 1-Aq y+B+1=n
Y. 820
B N
11 (¢ = Aq)
i=—y
[v]![B]!

Since the formula is so involved, let us do a few explicit checks.

Check 9.8. The unknot: n =2, m = 1.
XK(qa 7\)
1 a(a”' —Aq)1-Aq)  (1-1Aq)(q—Aq)
(1+q)(1—Aq) 1-gq 1

1
= l_qz(l—}\qz—qzﬂr)\qz):l.
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Check 9.9. The trefoil: n = 2, m = 3.
XK(q> >\)

~ A a(a”' - A1 -Aq)  ¢°(1 - \q)(q — Aq)
~ (1+4¢)(1-Aq) 1-gq 1-gq

A
= 1_qz(l—M2—q4+7\q4)=>\(1+q2—>\q2)

which checks with Example 6.4.
Thus we can be confident of the following formula for 3, m torus knots:

(9.10)

XK(q’ }‘) = (

Am—l
1-¢°)(1-q°
—q"" (1 +g)(1-Ag*)(1 - A) + ¢ *2(1 = A)(q — \)).

] ((1 = 2Ag®)(1 — Aq?)

Note. The formula of (9.7) is not obviously symmetric in m and n.
However, professor G. Andrews has kindly supplied me with a combinatorial
proof of this symmetry using the Heine transform.

10. Mapping class groups

The problem of classification of closed 3-manifolds can be reduced
via Heegard decompositions to the study of the mapping class groups
(= diffeomorphism groups modulo the connected component of the identity) of
closed orientable surfaces of arbitrary genus. It would be significant if one could
find representations of these groups and an invariant via the Reidemeister—Singer
theorem ([36]) as we have done for links via Markov’s theorem. We have not yet
succeeded but we would like to describe some progress towards that goal.

Presentations for the mapping class groups are known (see [6] and [45]). Let
us at least explain a known set of generators which owe a lot to Lickorish.

Figure 10.1 depicts a surface of arbitrary genus n. There are 2n + 1 broken
curves ¢, ..., Cy, ,, and one exceptional curve, called d. It is known that Dehn
twists (see [6]) about these curves generate the mapping class groups. Let 0,
denote the (isotopy class of a) Dehn twist about c,. It is not hard to see that
00,16, = 0,,,0,6,,, and 6,6, = 0,0, if |i — j| > 2. Thus the mapping class
group is generated by a homomorphic image of the 2n + 2-string braid group
and one further element. An obvious question is whether any of the Hecke
algebra representations give representations of this homomorphic image. The
answer is yes as we shall see.
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Ficure 10.1

One may consider the surface of genus n as a branched cover of the
2-sphere, branched at 2n points, via an obvious involution of the surface. It is a
result of Birman and Hilden in [9] that this branched cover actually gives rise to
a homomorphism from the mapping class group generated by the above
0.’s to the mapping class group M(0,2n) of the sphere minus 2n points. A
natural presentation of M(0, m) is known. It is (see [6], p. 164)
MO, m) = (w,, ..., 0, |ow; = v, i |i—j =2 0w, =
W 10,0, 1, W0y Wy oW (W g @] =1, (0wy...0, ;)™ =1). The
homomorphism from the subgroup described above is obtained by sending 6, to
w;. The kernel of this map is of order 2, so a powerful representation of M(0, m)
will be useful. Now our question becomes: For which Young diagrams on m
nodes does the corresponding Hecke algebra representation of B, pass to
M(0, m) (viewed as a quotient, 6, = w;)?

The clue is that in the braid group B,, one has 0,0,...0,,_502_,...0, =
(6,05...0,_1)"(05...0,_1) ™V so that the relation w,w,... w23 0, 5...
w, = 1 can be replaced by (ww;...w,_;)™ ' = 1. Now we know that for a
fixed Young diagram Y, 7, can be adjusted to 7y by an appropriate power of g
so that 7{(0,0,...0,_,;)™ = 1. This was done explicitly in Section 9. The
essential observation now is that if Y is rectangular the restriction of 7, to B, _,
is still irreducible. This follows immediately from the interpretation of the
lines on Figure 3.3. But the element (6,05...0, ,)™ ! is in the center of
B, _, (thought of as the subgroup of B, generated by oy, 0,..., 0, _,). Thus
7y(0y...0,_1)™ ! will be a multiple of the identity. Let us check that in fact
74(0y...0,_,)" ' = 1. By Lemma 9.3 we see that 7}(a,) is ¢~ "/%m,(0,). But r
and d are the same for 7, and its restriction to B,,_, since Y is rectangular, so
that 77(0,...0,_,)™ ' = 1. Now we have the following:

THEOREM 10.2. Let Y be a Young diagram and let =} be the corresponding
representation of B,,, adjusted as above so that m{(o,...0,_,)™ = 1. Then my,
defines a representation of M(0, m) via w;, — wy(o;) if and only if Y is
rectangular.
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Proof. We have already proved the “if” part. Now if Y is not rectangular,
Tylp _, will spht as the direct sum of several representations correspondlng to
Young dlagrams Y of the form Y minus one node. Numbering the Ys from 1 to k,

let 7, and d; be the corresponding dimensions. Then d = ©¥_ d,, r = Tk_ N
But the only way to have 7{(0,...0,,_,)™ = 1is for 7,/d, to be r/d for all i. A
combinatorial argument shows that this is impossible if k > 1. Q.E.D.

Thus for every integer m which is not a prime we have constructed
non-trivial representations of M(0, m) with a parameter q. The primes seem to
be more difficult to deal with. Certain special values of g give representations of
M(0, m) in the context of the (k, [) tableaux of [46], but their interest is, at this
stage, unclear. It is entirely possible that the representations with parameter q
are faithful. This is closely linked to the question of faithfulness of the Burau
representation.

As described above we also get representations of subgroups of mapping
class groups of closed orientable surfaces, but this begs the important question of
whether they can be extended in some way to the whole mapping class group.

However, in genus two, the group generated by the 6,’s is the whole
mapping class group so that we do obtain representations of this group M (2,0).
Up to symmetry there is only one rectangular tableau on 6 nodes, so in fact there
is really only one representation. Here is a choice of matrices corresponding

to @ which, when multiplied by g ~2/5, give a representation

-1 0 0 0 ¢ g O 0 0 0
0 -1 1 0 0 0 g 0 0 0
6, 0 0 ¢ 0 0 b:10 q -1 0 0
0 0 1 -1 0 1 0 0 -1 0
0 0 0 0 q 1 0 0 0 -1
-1 0 0 g 0 q 0 0 0 o0
0 -1 1 0 0 1 -1 0 0 0
0, 0 0 g 0 0 0,: |0 0 -1 0 gq
0 0 0 ¢ 0 1 0 0 -1 0
0 01 0 -1 0 0 0 0 gqg
-1 q O 0 0
0 g O 0 0
05 0 0 gq 0 0|
0 0 1 -1 0
0 0 1 0 -1
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One could also have written down matrices using [46] but the ones given
above have the advantage of being defined over Z[q, ¢ ']. They were obtained
using the Kazhdan-Lusztig formalism of W-graphs.

An element of interest in this mapping class group is the Dehn twist about

the curve in Figure 10.3.

Ficure 10.3

It is represented by the matrix

q8 9 0 0 0

0 q° 0 0 0

0 0 q° 0 0

-1+4¢*-4¢*+¢° g-¢*+q¢*-¢° -1+¢>-¢*+¢° 1 q-q*+q*-q°

0 0 0 0 q®
This shows that the representation is highly non-trivial on the Torelli group—the
normal closure of the above element. Note that when ¢ = — 1 this matrix is the
identity.

Presumably one may use the above representation to settle most questions
about genus 2 Heegaard splittings rather mechanically by specializing g to be in
a finite field.

11. The V polynomial

The discovery of P,(l, m) was preceded by the discovery of one of its
specializations V, (t), different from the Alexander polynomial; see [16]. It
satisfies the skein relation

(11.1) 1/tV, —tV, = (Vt —1/Vt)V,,
where L., L_, and L, are as in Figure 6.3. Thus,
Vi.(t) =P (it} —i(Ve — 1VE)) = X, (¢, t).

However, V, has retained its interest in spite of its more powerful generaliza-
tion. Ironically, one reason is simply because it only has one variable which
makes it easier to work with. Different models for it have been recently given by
Kauffman [19], which have led to solutions of some old problems in knot theory;
see [19], [32], [43]. It is also shorter to calculate, for reasons that will become
clear.
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We will also see in the next section that V has the surprising property of
being essentially an invariant of unoriented links. There is every indication that a
topological understanding of P will only be found once V has been understood
in its own right. For these reasons we would like to devote the next three
sections to the study of V; from the Hecke algebra point of view. In particular
we will give full proofs of most of the results of [16].

It is unclear from the skein picture why V; (or even A, for that matter) is
an interesting specialization. For this we look back to the origins of this work. In
fact the Hecke algebra relations (4.1), (4.2) and (4.3) were not the author’s
original motivation. In work on type II, factors we discovered *-algebras A,

with generators 1, e, e,, ..., ¢, and relations

(11.2) eX =e¢, e’=ce,

(11.3) ee; , e = Te,

(11.4) ee; =eje; if |i —j| >2

(where 7 is a real number related to the II, factors). These relations are not, for
all 7, a presentation of A, whose actual structure is decided by the existence on
it of a trace (which we will call tr by abuse of notation), for which the associated
sesquilinear form (a, b) = tr(ab*) is positive definite. This trace is uniquely
determined by the following Markov property:

(11.5) tr(xe,,,) =7tr(x) ifxe€A,.

Now let ¢t be such that 77! =2 + ¢+ ¢! and set g, =te, — (1 — ¢,).
Then e = ¢, is equivalent to g? = (t — 1)e, + ¢ and e,e,, e, = e, is equivalent
to

(11.6) 8i8i+18: T 881t 818 T g +g ,+1=0.

Thus in particular the g,’s satisfy (4.1), (4.2) and (4.3) with ¢ = q. But (11.6)
does not follow from these relations. Thus the algebra A is a quotient of
H(t,n + 1). To understand which quotient, it suffices, for generic ¢, to look at
the case t = 1. It is well known that the representations of the symmetric group
for which s;s,, s, + s;5,,, + 5,,,8; + s, + 5;,,; + 1 = 0 (the s,’s are transposi-
tions as in Section 4) are those whose Young diagrams have at most two columns.
One obtains the following diagram for A, whose meaning is the same as F igure
3.3 was for the Hecke algebras, where the Young diagrams are replaced by the
dimensions of the corresponding representations.
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VAN

A \z/ \1

2 2/ \3/ \1
NNV

w N NN
AZ \\14/ \14/ \6/ \1

We see that dim A, is the Catalan number

1 (211 + 2).

n+2\n+1

When ¢ = ¢*27/" the Hecke algebra is not semisimple, but a C*-algebra
must be, so that some collapsing occurs. The 1’s on the extreme right of each
level of Figure 11.7 die out, together with their progeny, as explained in
[17], [18]. This creates representations of mapping class groups as described in
Section 10.

It is clear that the trace of (11.5) is related to the Markov trace of Section 5.
In fact for only one value of z does the trace of Section 5 pass to the quo-
tient A,. This value may be evaluated in two different ways. The first is to
take the trace of (11.6). Onme finds ztr(g?) + 2z tr(g;,) +2z2+1=0 or
(2(1 +t) + 1)(z + 1) = 0. The value z = — 1 is of little interest so we have
z=—1/(1 + t). This gives tr(e) =t/(1 + )% = 7. The other way to derive
this is by noting that the trace must be zero on simple Hecke algebra quotients
whose Young diagrams have more than two columns. By Figure 5.6 we see
that this will be the case if g> — Ag = 0, or A = g, which is the same as z =
- 1/(1 +¢).

Thus we are led to consider V,(¢) = X, (¢, t) which satisfies (11.1). Of
course V; can be defined entirely within the A,’s. We will use 7, to be the
representation of B, into A, _, given by n,(0;) = te; — (1 — ¢,). Then if a € B,
has exponent sum e one has

(11.8) V.(t) = (— %)_ (Vt) “tr(my(a)).
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Relations (11.2)—(11.5) suffice to calculate tr(7,(a)) but since

(n —1|- 2) (2::12)

grows more slowly than (n + 1)!, computer calculation of V,, as outlined in
Section 6, is feasible for closed braids on more strings than for P, .
Let us record some specializations to V; of results obtained earlier for P; .

ProposiTION 11.9. Let n and m be relatively prime and let K be an (n, m)
torus knot. Then
f(n=D(m—1)/2
(1-1¢%)
Proof. Putting q =t in the formula of Theorem (9.7) causes the sum to

collapse to only two terms, those with 8 = 0 and 1. The answer follows by
calculation. Q.E.D.

VK(t) — (1 _ tm+1 _ tn+1 + tn+m).

Note. It would be possible to avoid the algebraic complexity of the proof of
(9.7) by rerunning the argument on A, alone. The two terms in the sum
correspond to the two right-hand terms on each line of Figure 11.7. The weights
are easily obtained from Figure 5.7 and also appear in [17], [18] and [44].
Moreover, if (9.7) is considered a reasonable formula one could write down a
formula for V, where L is a general torus link.

ProposiTiON 11.10 ([16], Theorem 21). If a € By is such that & is a knot
and the exponent sum of a is e then

Vi(t) = t2(1+ ¢+t + 1/t — t/27 11 + t + 2)A(¢)).
Proof. Putting g = A = ¢ in (8.4) gives the result. Q.E.D.

ProposiTion 11.11 ([16], Theorem 22). With notation as in Proposition
11.10 except that o € B,,

t7 V() + 1V (1/t) = (0732 + ¢71/2 4+ ¢1/2 4 53/2)(¢/2 + ¢ ¢/2)
—(t72+t P+ 24+t + t2)A4(¢).
Proof. Put t =X =g in (8.10), multiply by (1/t)“*Y/2 and simplify.
Q.ED.

We have discussed various explicit formulae for the irreducible representa-
tions of the Hecke algebras but there are many other natural representations
which are not necessarily irreducible. One which plays a prominent role in the
algebraic theory of the V polynomial was first discovered by Temperley and Lieb



HECKE ALGEBRA REPRESENTATIONS 367

in [42] in connection with the Potts and ice-type models of statistical mechanics.
It was rediscovered by Pimsner and Popa in [34]. We use the Pimsner—Popa
formalism. The infinite tensor product of 2 X 2 matrices, ® 2 ;M,(C), has an
obvious shift endomorphism ¢ defined by 6(x® 1 ®1®...) =190 x® 1 ®
1.... Let

e= {I—tl-—te“ ® €9y + —ii—t(em ®epyt+ey®ey,) + 1—12622 ® eu} ®1®1®...
where ¢;; are matrix units for M,(C). One may easily check that if e, =o'(e)
then relations (11.2)—(11.4) hold for t € R* where * is the usual conjugate
transpose. The ensuing representation, call it 8, of A, for all n is faithful for
generic t. For positive real ¢ this follows easily from [17].

It is interesting that the trace tr on A, is not given by the restriction of the
(normalized) trace to 6( A ). In fact, the relevant linear functional on ® 2 My(C)
is the Powers state ¢, (see [35]) defined by

¢ (2, ®x,® - ®x, ®1®1...)=TR(h®h® - ®h)(x, ® --- ®x,))

where TR is the non-normalized trace (sum of diagonal elements) on M,.(C) and
h is the 2 X 2 matrix

1/(1 +¢) 0
0 t/(L+1t)]

One may check in fact that ¢,(xy) = ¢,(yx) for x € U,0(A,) and y € T. The
Markov property ¢,(6(xe, . ,)) = t/(1 + t)%,(8(x)) is straightforward. Let us
call this representation (of A, |, H(q, n) or B,) the PPTL representation.

Another representation for 7 =1/n, n = 2,3,4,..., can be obtained by
iterated crossed products. If CZ , is the group algebra, then Zn (=Z),) acts on it
in the obvious way. So one may form CZ, % Zn. Iterating this procedure one
obtains an algebra generated by u;’s, k=1,2,... with u} =1, uu,,, =
e®/"uy ,yuy and wu; = uu, if |k — j| > 2. By Takesaki duality [41] one
knows that, for even k, the algebra generated by u,, ..., u, is the p*/2 x p*/2
matrices. Setting

one obtains a faithful representation of A;. An explicit matrix form may be
found in [4]. Here the Markov trace is the usual normalized trace.
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12. The values V, (e®"/™), n = 1,2,3,4,6,10

In [17] it was shown that the only values of 7 for which the trace on A, is
positive definite (tr(a*a) > O for a # 0) are the values 7 = (4cos’r/n)" !
n = 3,4,5,... . These values correspond to t = e *27/" so it was expected that
these values of V, should be somehow special, as A, at these values of
provided entirely new examples of subalgebras of von Neumann algebras. We
remind the reader that these are also values of g (except for n = 1) for which
the Hecke algebra is not always semisimple.

Although many of the following results can be deduced from the skein
relation, we shall indicate the algebraic proofs as well since the skein relation is
not very suggestive.

(12.1) V,(1): When t =1 the PPTL representation of the braid group
factors through the symmetric group and is given, up to sign, by permutations of
the tensor product components of C2 ® C2 ® ... . The Powers state is in this
case only the normalized trace. Also vVt + 1/Vt = 2 and tr(g,) = 2. It follows
immediately that V; (1) = (— 2)°~! where c is the number of components of the
link L (Theorem 15 of [16]). Note that the value ¢ = 1 is not allowed in the two
variable polynomial, V; (1) being the limit of X, (g, A) as (g, A) — (1, 1) along
the curve q = A.

(12.2) d/dt V,(1): Here the skein theoretic proof is much simpler and the
algebraic proof does not lead to any more understanding. Suffice it to say that
the following result may be obtained non-inductively (though not easily) by
differentiating the formula for V; coming from the PPTL representation and the
Powers state, putting ¢ = 1 and using the permutation method of (12.1). The
result is

V/(1) == 3(—2)°"? (total linking number of L).
(This result was also noticed by Murakami in [30].)

Proof. Differentiating the skein relation and putting ¢t = 1 gives V/ (1) —
Vi (1) =V, (1) + V(1) + V,_(1). If the crossing involves only one compo-
nent of the link V; (1) =V, (1) = — (1/2)V} (1) by (12.1) so that in this case
Vi,(1) = Vi _(1). If the crossing involves two components, V; (1) = V; (1)
=— 2V, (1) = (—2)°"! so that in this case V; (1) — V; (1) =— 3(—2)°"%
The result follows by induction Q.E.D.

The higher derivatives of V; at 1 seem interesting as the difference between
the nth derivatives of V; and V;_ will not involve the nth derivative of V; .

We record here the simple fact that changing a positive crossing of a knot to a
negative one will change V{’(1) by six times the linking number of the two-com-
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ponent link formed by eliminating the crossing. A similar argument with A
shows V(1) = — 3A%(1).

(12.3) V. (— 1): The formula V, (= 1) = A, (— 1) follows immediately from
their skein relations.

(12.4) V,(e2"/3): Define the representation of A, when t = ¢271/3 (1 = 1)
by sending e; to 1. The trace on A, that this defines satisfies the Markov
property trivially; so since Vt g, is sent to — 1 we have, by (11.8), V, (e2"/3) =
(— 1)~ ! where L has C components (see 14 of [16]).

ProposiTioN 12.5. If K is a knot then 1 — V(t) = Wi (t)(1 — t)(1 — t3)
for some Laurent polynomial Wy (t).

Proof. By (12.1) and (12.4), 1 — V} is divisible by 1 — ¢ and by (12.2) it is
further divisible by 1 — ¢. Q.E.D.

Thus extraneous information is recorded in Vi(t). We have chosen to
record the simplified Wy (¢) in Table 15.9.

(12.6) Vi(i): It has been shown by Murakami [31] and Lickorish-Millet [23]
that
0 wunless arf( L) exists

vili) (= 2v2)° (= 1)™®  otherwise.
The author first proved the result for knots by observing that the calculus of
Lannes in [21] when applied to a braid projection of a knot follows the same
pattern as calculating the trace of the image of the braid in the iterated crossed
product representation at the end of Section 11 when n = 2.

(12.7) V,(e'"/®): This value suggested itself as interesting because of the
special nature of the algebra A, when 7 = 1/3. It is shown in [18] that the
image of B, is finite, and the groups are identified for all n in [10]. Birman
conjectured that V; (e'™3) = i¥(y3)*: for integers k, and k, depending on L.
The situation is completely clarified in papers by Lickorish-Millet [23] and
Lipson [26] where V, (e'"/®) is calculated in terms of a Seifert form for L. A
braid-representation version is also possible. This has been begun by the author
and D. Goldschmidt in [15].

(12.8) V,(e'"/5): The values q = e*'"/5 have a peculiar feature in the
Hecke algebra picture: «(B,) is finite when n < 3 but infinite otherwise. In fact,
it was shown in [18] that 7(0,0,0, ') has infinite order. Thus V, (e¢'"/®) can be

used as a test for being a 3-braid—the set of all possible values for closed
3-braids is finite and could easily be written down.

A question posed in [6] is whether every a € B, is conjugate to an
element of the form a,0,a,0, ! with a; and a, € B,. For a of this form we have
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To(@) = mo(a)(t + 1)e, — D)my(ay)((t~ ! + 1)e, — 1) and expanding and sim-
plifying we find that tr(m,(a)) = 1/7 tr(e,my(a,)e,m(as)). Letting n = 3 and
t = e'"/5 we see that the set of V; values of elements of the above form is finite,
so to answer the question in the negative (even with conjugacy replaced by
Markov equivalence), it suffices to exhibit infinitely many values of V,(e!"/%)
with L = & « € B,. But in [18] it is established that the Burau matrix of
0,0,05 ' has an eigenvalue which is not a root of unity. On the other hand, in the
representation on the extreme left of the A level of Figure 11.7, e, = e, so that
010,05 ! is the same as 0,0,0, ' which has finite order. Thus in the weighted sum
version of the trace, the contributions of the first and third representations on the
A, line are periodic whereas that of the second is aperiodic. So infinitely many
powers of 6,0,0; ' are not Markov equivalent to 4-braids of the special form.

Finally, note that for ¢t = ¢ *2"/" except those above, one cannot expect
any especially simple behavior. In fact, for each such ¢, {|V,(¢)| |L is a closed
3-braid} is dense in the interval [0, 4 cos®7/n], which we shall prove in Section
14. For other roots of unity the situation is unclear at this point.

13. The plat approach

A plat is a closed, unoriented link & that is formed when a braid a € B,,, is
closed according to the prescription of Figure 13.1.

-0

N\

a € By the plat &

Ficure 13.1

Any unoriented link is of the form & for some (a, m), a € B,,, (see [6]). Birman
has proved the following analogue of Markov’s theorem which is essentially
contained in [7].

Tueorem 13.2 (Birman). For each m let C, be the subgroup of B,
generated by the set X U Y U Z where

X={62i—1; i=1,2,...,m},
Y = {"zi"zi—l"ziﬂozﬁ i=12,...,m— 1},

- -1 -1, ; — —
Z—{oziozi_lozﬁlozi, i=12,....,m 1}.
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Also let the map S;: sz — By, o be defined by Sk(a) = a0y;. Then
(a) Ifa € B, xay= & forx,y € C, and S, (a) = & (= means 1sotopzc)
(b) The equivalence relation on 11,,B,,, generated by the two “moves”
a—xay (¢ €B,,, x,y€ C,) and a < S, (a), a € B,,, is the same as the
equivalence relation given by isotopy of the plats.

It is not obvious that the plat closure should be related to the Hecke algebra
in any way similar to the closure of Section 1. In fact it seems impossible to use
all the information of the Hecke algebra in the plat picture. But pp. 192-194 of
[6] and Section 10 give a clue as to how to use the Hecke algebra: the plat
closure of a € B,,, really only depends on the image of a in the mapping
class group of the 2-sphere minus 2m points. Thus one should look first
at quadratic representations whose Young diagrams are of the form @,

which we know occur as summands of the representation 7, of Section 11. The
following lemma is thus suggestive (A, are as in Section 11).

Lemma 13.3. (i) In A,,,_,, the idempotent p,, = ee;. .. e,,,_, is minimal,
i.e. p,Ay,,_ 1P, C Cp,,.

(ii) If py is the irrep of A,,, _, corresponding to the Young diagram (with
at most two columns) Y then p,(p,,) # 0 if and only if Y is rectangular with
two columns (i.e. as above).

These representations are on the extreme left of Figure 11.7.

Proof. (i) It suffices to prove that if x is a word on the ¢’s, i =
1,2,...,2m — 1, then p,,xp,, € Cp,,. But from Lemma 4.1.2 of [17] and (11.2),
(11.3) and (11.4) we have e,,, ,xe,,_, € A,, _3€5,,_,. The assertion follows
by induction.

(if) Since p,, is minimal there is at most one Y for which p,(p,,) # 0. By
induction and Figure 11.7 we see that Y must be either Y, = @ or Y, =ff] But

the Markov trace of p,, is 7™ and the weights for Y, and Y, are different (use
Figure 5.4 with ¢ = A), that of Y, being 7™ Q.E.D.

CoroLLARY 13.4. Let Y be the Young diagram HH. Then py(e,) = py(es).

Proof. Both py(e,) and py(e;) are minimal idempotent in the two-
dimensional representation p,. They both dominate the minimal idempotent

py(ees) = py(py). Q.E.D.



372 V. F. R. JONES

Remark 13.5. In general the number of nodes in the second (smaller)
column of Y is the largest m for which the product of a commuting subset of
size m of the e;’s is non-zero in the corresponding representation of A,. For
instance, e;e; = 0 if |i — j| > 2 in the Burau representation (tensored with
parity) which characterizes it among Hecke algebra representations.

Definition 13.6. The linear functional ¢: U,,A,, , — C is defined by
P XPm = ¢(x)pm for x € A2m71'

Note that in order for ¢ to be well-defined we need to show that if
P+ 1%Pm+1 = AP, and p,xp, = up, then A = p. This is clear from the
definition of p,. Thus ¢ is also defined by lim,, .,  (p,xp,, — ¢(x)p,,) = O (see
(1]).

Note further that the proof of Lemma 13.3(i) was constructive. It gives an
algorithm for calculating ¢(x). The following formula will also be useful.

Prorosition 13.7. Forx € A,,,_,, ¢(x) = 1 /7™ tr(xp,)).

Proof. Just take the trace of the defining relation for ¢ and use tr(p,,) = 7"
Q.E.D.

The next result gives the connection of ¢ with plats.

LEmma 13.8. Let g, =te;,— (1 —¢,) € A,. Then
@) Pngsil) = gslip, =t*'p, for i=12,.... m.
(ii) P (82i82i—182i+182:) = (82i82i—182i+189:) P = 1P, for i=1,2..m-1

(iii) pm(g2ig2i—lg;il+lg£il) = (g2ig2i—lg£il+lg£il)pm =p, for i=12...m-1.

Proof. (i) is trivial. For (ii) and (iii) note first that it suffices to consider the
case m = 2 since all the e;’s except two are irrelevant to the calculation.

Let f be the minimal central idempotent of A, corresponding to .
Then p; = p;f by Lemma 13.3 so that pg,g,85'g," = psfe.g.25'25% = ps
by Corollary 13.4, which proves (iii).

For (ii) note that (g,g,838,)2,(g5 'g; 'g;5 g5 ') = g5 follows from the braid
group relations as does the formula with 1 and 3 interchanged. Thus it is
immediate that g,g,g;g, commutes with e,e; = p,. Hence P3828183580 =
P382f218582P5 = P3828182P; = $(g2878,)ps. Now it remains to calculate
$(82818s) = 1/7°tr(ee58,878,) = 1/7 tr(e,8,83g,). But g2 = (t — 1)g, + ¢t
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so that
t—1 t
o(g.g3g,) = tr(e,g,2,25) = ;tr(elgé)

T

Il

(¢t — Dt*tr(gy) + tte((12 — 1)ey + 1)
— P+ 2+t 4t
= = t. Q.E.D.
1+¢
CoroLLARY 13.9. Suppose a € B,,, and x,y € C,, (the group of Theorem
13.2); then ¢(xay) = t*p(a) for some k € Z.

We now take care of the stabilizing move S,.

LEmma 13.10. Let x € A,,,_,. Then
1
¢(xgs,) = — (T17)¢(x)'

Proof. By Proposition 13.7,
1

(L+1¢)

o(x).
Q.E.D.

Combining Corollary 13.9, Lemma 13.10, and Theorem 13.2 we obtain the
following:

1 1
¢ (xgs,) = F+—1tr(xg2mpm62m+l) = Ftr(gzm)tr(xpm) =-

Tueorem 13.11. Let a« € B,,, and B € B,, be such that & and B are
isotopic. Then there exists k € Z. such that

(= (t+1)" "o(mo(a)) = t5(= (t + 1))""¢(my(B)).
Proof. By Corollary 13.9 and Theorem 13.2 it suffices to check that
(= (@t + )" To(my(a) =(— (t + 1))"¢(m,(S,,(a)). But this is Lemma 13.10.
Q.E.D.

Thus we have a (potentially) new invariant for unoriented links. We shall
show that it is in fact only an unnormalized version of V. The idea of the proof
is that a closed braid is really a special kind of plat, where the closing scheme is
changed as in Figure 13.12.

/\f\/\-—//ﬁ:\\\

Ficure 13.12

The two theories corresponding to the different types of closure are equivalent
under conjugation by an element @ which we shall make explicit below. We
begin with a simple lemma.
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Lemma 13.13. Let {: U,A, — C be a linear functional with (1) = 1,
Y(xe,, y) = (xy) ifx,y € A,. Then = tr.

Proof. By induction assume { = tr on A,. Then ¢ = tr on the subspace of
A, ., spanned by A, and all elements of the form xe, , ,y, which is all of A,
by [17]. Q.ED.

Tueorem 13.14. Let L be an oriented link and let « € B,,, be such that
& = L as unoriented links. Then there is a k € R, 2k € Z with V,(t) =

t5(— (¢t + )" 'o(m(a)).
Proof. We know there is an n and a 8 € B, for which f = a. Let

Q, = (0,05...05,_1)(050,...03,_5) ... (0,0,,,) € By,.

As shown in [6], ©,8Q'= f = & where B is considered as an element of B,, in
the usual way (equality meaning isotopy as unoriented links). By Theorem 13.11
and the definition of V; it suffices to show that ¢( 7, (2,82, ")) = tr(7,(B)). In
fact we claim that if Y on U, A, is defined by

Y(x) = ¢(W0(Qn)xw0(9n)7l) forx € A,_,, then ¢ = tr.
The first thing to check is that ¢ is well defined; i.e.
¢(77'0(9n+1)x70(9'n+1)_1) = ‘P(Wo(gn)x'”o(ﬂn)_l) forxeA,_,.

But the formulae 20,0 "' = 05,' 05,05, | for 1 <i <p — 1 are easily checked
in the braid groups. They imply

(13.15) Wo(Qp)ei'Vo(Qp_l) = 85 1620y forl<i<p-1

So conjugation by (2, ;) has the same effect on A, _, as conjugation by
7o(§2,), and ¢ is well-defined.

Now /(1) = 1 is obvious so by Lemma 13.13 we only have to show that
Y(xe,y) = mY(xy) if x,y € A,_,. We proceed by induction on n. Using
Proposition 13.7 we have

Y (xe,y) = ¢(76(Q, 1) xe,y70(2,,,) ")
= &(mo(2,)x70(2,) 250 1020800 170(2,) y7(R2,) ) (by (13.15))
= 7" (P () 27 (2,) g2 1000800170 (2) e (2,) )
= 77" e 7 (R,) 2y 7, (2,) ') (by (11.5) used twice)
= 7(7779 (7 (2,) 1y (2,) 7))
o (xy). Q.ED.
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XX C

Ficure 13.18

CoroLLARY 13.16 (see [24]). If L and L' are two oriented links which are
isotopic as unoriented links, there is a k € Z such that

Vi(t) = t*v, (t).

Note that the value of k is easily determined in terms of linking numbers by
(12.2).

CoroLvLarY 13.17 (see [11], [25]). Let L., L_ and L, be unoriented links
identical except at one crossing where they are as in Figure 13.18. Then there are
numbers k, and k,, 2k, € Z, such that

Vp, —thV =t (1 - 1)V,

Proof. Changing a link into a plat is rather easy, being achieved simply by
threading local maxima and minima through the link. This can be done so as to
leave alone any portion of the link that already looks like a plat, in particular a
single crossing. Thus there are braids a,, a, € B,,, such that L_ = a0,a,,
L, = a0, 'ay, Ly = aa, (look at Figure 13.18 sideways). But by Eq. (4.1),
To(@,0,05) — tmo( g0y 'ay) = (t — 1)7y(a,a,). Taking ¢ on both sides of the
equation gives the answer by Theorem 13.14. Q.E.D.

The values of k, and k, can be determined by calculus. For instance, if L,
and L_ are knots and L_ is also a knot, we have Vi) —kV, (1) -
Vi (1) ==V, (1) so that by (12.1) and (12.2), k, =1 and Vi, —tV, =

"2(1 — t)V, . Differentiating again gives V”(l) V') =—- 2k, or

=— (VL”(I) Vi’ (1))/2. But by the comments at the end of (12.2), V”(l)
— V” (1) is — 6 times the linking number of the oriented link L, formed by
ehmlnatlng the crossing according to the orientation. Thus we obtaln in the
above situation V; — ¢V, = ¢3*(e)(1 — ¢)V, . This is easily checked on the
right-handed trefoil, where L_ and L_ are both unknots.

We see by induction that V, is determined by certain linking numbers of
two-component links obtained by successively eliminating crossings of L so as to
obtain knots. A similar statement is true for links.

Corollary 13.16 is somewhat surprising (Lickorish has shown that Corollaries
13.16 and 13.17 are essentially the same) since the polynomial P, , and even the
Alexander polynomial, usually change wildly if the orientation of a link is altered.
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Note 13.19. A plat @ with a € B,,, is called an m-bridge link. By (ii) of
Lemma 13.3 and Figure 11.7, to calculate V, for an m-bridge link it suffices to
know a

il

m+ 1\ m
matrix representing « and an expression for the matrix p,,. For 2-bridge links,
one is dealing with 2 X 2 matrices and the representation of B, is given by

t 0 ~1 ¢ 1 0
"1"’3%(1 —1)’ "f’( 0 t) and pl:(l/1+t 0)

so that V;, for a € B,, is obtained by calculating the 2 X 2 matrix of & and
adding up the terms in the first row with weights 1 + ¢ and 1 (the answer is
correct up to a power of ¢ which must be determined).

What is more interesting is that we can give the formula for 3-bridge links,

since the representation in question is for Y = @ , which appears explicitly (with

g <t and 6, © 0;) in Section 10. One may easily calculate p, = e,eqes =
(I +¢)73(1 + g,)(1 + g3)(1 + g5) and one finds that V. is, up to a power of t,
obtained by calculating the 5 X 5 matrix representing & and adding up the third
row, with weights ¢, 1 + ¢, (1 +¢)% 1 + ¢, 1 + ¢t. On a computer this calcula-
tion is very rapid for indefinitely complicated 3-bridge links.

Note 13.20. There is a remarkable connection here with statistical mechan-
ics. In fact, the algebras A, had been used by Temperley and Lieb in [42] to
partially solve a statistical mechanical model known as the Potts model. Indeed
the linear functional ¢ essentially defines the partition function. A solution of the
Potts model would be an explicit expression for f(x, y) defined as

lim izlog(¢(((l +xe) ) (1 +xey)...(1+xe,_,)(y + e)

n—oco N

><(y + e4)...(y + en))")).

The Potts model is defined for a system of “atoms” arrayed on the vertices of a
regular lattice in R% This is how the relation with closed braids (especially
regular knot projections) comes about. The algebras A, are a calculational
device known as transfer matrices. In [19], Kauffman eliminates the need for

braids by defining a Potts model on an arbitrary link projection (see also Chapter
12 of [4] and [42)).
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14. Positivity considerations

In the context encountered by the author, the algebras A possessed more
structure. They themselves were C*-algebras and the trace tr was the data
necessary to complete U, A, to become a von Neumann algebra. More precisely,
for each positive real ¢ and t € {ez"i/"|n = 3,4,5,...} there is a unique
C*-algebra A (infinite dimensional if ¢ # e *27/3) generated by non-zero projec-
tions e; (i = 1,2,...) satisfying (11.2), (11.3) and (11.4) together with a faithful
trace tr uniquely defined by (11.2). The values t = ¢e*2"/" and ¢t € R* are
distinguished on the braid group level by the obvious fact that for t = 1 or
e *2m/" @ (0,) is unitary, but is not unitary otherwise.

The G.N.S. construction ([3]) is to make A into a pre-Hilbert space with
scalar product (a, b) = tr(ab*). Then A itself acts faithfully by left multiplica-
tion on the Hilbert space completion 5, and the ¢,’s are realized as projections
onto closed subspaces. The situation is thus very geometric and relations
(11.2)—(11.4) can be thought of as defining special configurations of subspaces.
Note that they are not (for ¢t # 1) the same configurations as those arising in
Coxeter-Dynkin theory, though there are relations; see [12].

The von Neumann algebra in question is the closure of A (on ) in the
topology of pointwise convergence. Similar considerations apply to the linear

functional ¢.

ProrosiTioN 14.1. For positive real t and t € {ez’”'/"ln =3,4,5,...}, the
linear functional ¢ of Section 13 is a state, i.e. ¢p(x*x) > 0, ¢(1) = 1.

Proof. Elements of the form a*a are positive in a C*-algebra and since
Pm = P DX *xp,, is positive. Q.E.D.

In fact, it is easy to see that ¢ is a pure state; i.e., in the G.N.S.
representation (as above), A acts irreducibly.

While many of the early uses of the C*-structure have been improved upon
(e.g. Theorem 5 of [16] is much weaker than Scholium 6.15), there are still some
results that have no other proof and the C*-techniques are often useful in quick
growth estimates. To illustrate the technique we prove an inequality which,
while not terribly sharp, is certainly in the right direction.

ProposiTiON 14.2. Let a € B, have an exponent sum e and let e, be the
sum of all positive exponents of 6,’s in a. Let V, be the largest power of t in V.
ThenV, < (n—1+¢e)/2+e,.

Proof. For t e R, t> 1, ||g;|| =t (g, = te;, — (1 — ¢;)) and ||ab| < ||a|l
|b|| so that ||my(a)|| < ¢°* since ||g; || = 1. When t —> oo the result follows
that from formula (11.8) and |tr(x)| < ||x]|. Q.E.D.
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Note 14.3. One could deduce something about the degree of the polynomial
part of V from Proposition 14.2 but Murasugi [32] and Thistlethwaite [43] have
shown that this degree is in fact a lower bound for the crossing number of the
link L. The C*-von Neumann picture is more complicated for the whole Hecke
algebra but the theory is adequately explained in [14], [46].

Positivity might be useful in questions of faithfulness of representations by
the following results.

ProposiTion 14.4. If a € B, then o« € kerm, for t = +e2"i/k k=
3,4,5,... if and only if Vy(e*>"/*) = (= 2cos w/k)" "' (see Theorem 10 of
[16]).

Proof. Saying Vy(e®"/*) = (— 2cos m/k)""! is the same as saying
tr(my(@)) = 1. But @, is unitary, so that by the “equality” part of
Cauchy—Schwarz, 7y(a) = 1. Q.E.D.

CoroLLARY 14.5. If @ € B, then a € ker 7o ( for generic t) if and only if
Va(t) = (= (¢t + D/ Ve)mt,

Proof. All entries in the PPTL representation are rational functions of vz
and so are determined by their values at ¢27/% k = 3 4, 5, ... Q.E.D.

- Finally we use positivity to prove an assertion of Section 12.

ProposiTiON 14.6. For each t let A, , = {|V,(t)| L = & a € B,}. Then
for t =e*2"/k ke Zt k¢ {1,2,3,4,6,10} and n > 3, A, =
[0, (2 cos m/k)" '] (where the bar denotes closure).

Proof. That A, , [0, (2cos 7/k)" '] follows from the Cauchy—Schwarz
inequality and formula (11.8). Now it is shown in [18] (essentially because of the
paucity of finite subgroups of SO(3)) that for ¢ of the above form, Y(By) is
infinite, { being the Burau representation. Thus also Y(TI') is infinite for T’ < B,
[B;: T'] < oo. Now by [40], ¥ may be normalized by changing Y/(0,), ¥(0,) by
a root of unity so that y(B;) C SU(2), but then if T is the kernel of any map
from Bj; to a finite cyclic group, (T") will be an infinite subgroup of SU(2). Its
closure must be a Lie group with non-trivial connected sets. In particular the
connected component of the identity of W must contain — 1. But if T is
chosen correctly, tr(y(y)) will equal tr(qrEP(y)) for y € T and tr(wﬁ(y)) = 1.

Thus using the weights for the third row of Figure 11.7, which are (4 cos®m/k)~!
and 1 — (2cos?7/k) ™!, we see that the connected component G of the identity
of 7y(T') must contain an element of (Markov) trace zero. But then x — |tr(x)]
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is a continuous function from G to [0, 1] which contains 1 and 0. This argument
proves the assertion for n =3, but for n > 4 the only change is in the
normalization since tr is compatible with the inclusions of the A ’s. Q.E.D.

CoroLLARY 14.7. For t as above, {|V(t)| |L a link} is [0, o).

Note. The corollary is also true for ¢t = ¢>™/1° by a special argument;
indeed, Proposition 14.6 holds for n > 4 for ¢ = ¢27i/10,

15. Braid index; bridge number; tables

TreorEM 15.1 (Morton, Franks-Williams [28], [47]). Let L be an oriented
link with polynomial X, (q, X). Let d, be the degree of the largest power of A
in X; and d_ be the smallest. If « € B, has & = L then

(MFW) n>d, —d_+1.

Proof. Let a have exponent sum e. Then

1— }\q n—1
X,=|—- =—/—— A tr(7(a)).
e IR
By induction on the Markov property tr(7(a)) is an honest polynomial in
z2=—(1 - q)/(1 — Aq). In particular for fixed q it has a finite limit as A\ - o0.
Thus [X;| < (const) A" "¢ D2 ag X\ - 0. So d < (n + e — 1) /2. Considering
a”! and by Proposition 6.10, —d_ < (n—e—1)/2. Thusd, —d_ <n — 1.

Q.E.D.

The braid index of L is by definition the smallest n for which there is an
a € B, with a = L.

The MFW inequality is a wonderful thing. A careful look at the proof of
Theorem 16.1 shows that the inequality, viewed as a lower bound for the braid
index, should be fairly good. But the author was totally unprepared for what he
found in compiling Table 15.9. Of the more than 270 knots on ten crossings or
less up to symmetry, the MFW inequality is sharp on all but five (9,,, 9,4, 10 150>
10,3, and 10,5) of them! In the Lickorish-Millet variables d, and d_ are the
largest and smallest powers of 12 The MFW lower bound can be read im-
mediately off the tables, for instance, in the notation of [22],

Py, = (= 1-4[-4] —2)(26 [6] 1)(— 1 - 4[- 2])(1 [0]),

so the braid index of 9,, is > 4 since there are four non-zero terms in the first
(...). In an interesting improvement of the MFW inequality, Morton shows in
[29] that the number d, — d_ +1 is in fact a lower bound for the number of
Seifert circles in any regular projection of L.
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It is useful to have other tools available in case the MFW inequality fails. A
convenient one comes from Section 8.

ProposiTiON 15.2. If K is a knot and |Ay(i)| > 3, then K is not a closed
3-braid (see 23 of [16]).

Proof. By (12.6), V(i) = +1. So by (8.4) and (11.2), |1 + i¢ — i*/2A(i)|
= 1 if K is a closed 3-braid; so we would have |A(i)| < 3. Q.E.D.

The basic inequality coming from positivity is the following.
ProrositioN 15.3. If L is a closed n-braid then

|V, (e2"/%)| < (2cos m/k)" ", k=3,4,5,....
Proof. See 14.6.

CoroLLarY 15.4. If a € kerm,, a € B,, for t = 2"/ k= 3,4,5,...,
then the braid index of a is n.

Proof. |Vy(e2"/*)| = (2cos 7/k)"; so by Proposition 15.3, & cannot be a
closed p-braid for p < n. Q.E.D.

CoroLLarY 15.5. Suppose a € B, is a product of conjugates of terms of the
form o}t with GCD(k,) > 2. Then the braid index of & is n.

Proof. If GCD(k;,) is even then & is an n-component link, so obviously has
braid index < n; otherwise m,(«) = +1. So by 16.3 we are through, as in
Corollary 15.4. Q.E.D.

By [6], the minimal bridge number of a link L is the smallest n for which L
is of the form & for a € B,,. We have been unable to find sharp general results
on the bridge number using V or P but Proposition 14.1 does give results
formally the same as Proposition 15.3 and Corollaries 15.4, 15.5.

ProposiTiON 15.6. Suppose L is a plat on 2n strings; then

|V, (e2"/%) | < (2cos m/k)" "

Proof. Imitate 15.3 using ¢ instead of tr. Q.E.D.

CoroLLARY 15.7. If a € B,, is in kerm, for t = e/ k= 3,4,5,...,
then the bridge number of & is n.

Proof. See Corollary 15.4. Q.E.D.

CoroLLary 15.8. Suppose a € B,, is a product of conjugates of terms of
the form o} with GCD(k,) > 2. Then the bridge number of & is n.
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Proof. See Corollary 15.5. Q.E.D.

TasLE 15.9. The following table gives the braid index, a braid expression,
ampbhicheirality information, and the W polynomial of Proposition 12.5 for all
unoriented prime knots up to 10 crossings. The last column may also contain a
reference number for any special comments, which appear after the table. For
ampbhicheirality, the last column is left blank if the knot is not amphicheiral and
this is detected by V. An entry “A” means the knot is amphicheiral and “N”
means that it is not, but V fails to detect it (so also does P for knots on < 10
crossings).

Some care was taken to ensure that the braid words are as simple as possible
but no adequate technique is yet available to give proofs except in special cases.
Less care was taken with the 10-crossing knots.

The knot enumeration is as in [13], [37] with one or two corrections. Either
the knot drawn in [37] or its mirror image is recorded, chosen according to
whose V has the least power of ¢t~ 1. No confusion need arise as the braid word
completely specifies the knot. Braid indices come from the MFW inequality
unless otherwise indicated.

All coincidences of V are recorded.

The following example explains how to read the table: The knot 8, has W
polynomial ¢t~ 3(1 — ¢t + 2¢2 — 3 + t*).

Knot Braid Word P(W) W A/N
3, 2 I3 0 1

4, 3 127'12°! -2 -1

5 2 1 0 1101 4
5, 3 12221712 0 101

6, 4 17'217!327132 -2 -10-1

6, 3 11'217193 -1 -1 -1

6, 3 1'221°22 -3 1-11 A
7, 27T 0 1111101

T, 4 171332123712 0 10101

7, 3 12217 !gf 0 110201

7, 4 1223217123719 0 10201

75 3 1%217 122 0 1102 — 11

Te 4 127117239233 -1 -12-11

7, 4 137'2371217!237!3 -3 1-21-1

8, 5 17'2327117142324"! -2 -10-10-1

8 3 171251712 1 1-11-1

8 5 17227'14234712°13 -4 -10-20-1 A
8, 4 133273721271 -3 -10-21-1

8s 3 1327113271 1 1-21-1

8 4 1121713712332 -1 -11-21-1

8, 3 l*272127! -2 1-12-11
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122711324

11112 — 23 — 21

Braid Word Py (W) w
171212319232 -3 1-12-11 5
171217393 —4 -1 -21-1 A
112217293 -2 1-13-11
171223719321 12 -1 -12-21-1
12713471347 12137 12! -4 -11-31-1
1223712113729 -3 1-22-11
1222171371237 12 -1 -12-22-1
12271132223 0 1103 — 22 — 1
1227112271121 -2 1-23-21
1712171221729 -4 -12-32-1
12711271127 112! — 4 - 13 -337!
12121221 0 11111
1321732 -1 101
12721223 0 1-11-1
1° 0 1112111101
123433471213 127! 0 1010101

9 12711622 0 111120201
9, 171321%23%27! 0 11020201
9 122171327 134234 12 0 1020201
9% 122215271 0 11112 — 12 — 11
9, 132321123371 0 1102 — 12 — 11
9 1271317241327 13%3 -3 -1 -22-11
9 132711492 0 11112 — 13 — 11
9 1121223371232 0 1103 — 1301
9 171237121 19432 1 2-13-11
9 1271123234234 1 -1 -12-22-11
9 1223712113293 0 1103 — 13 — 11
9 1423719371937 11714192391 -3 1-22-21-1
12711327 14371423 -1 -12-23-11

0

3

0

4

1
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© >

2 g
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)
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)
W

O O O © ©
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QR

133271127137 19711971 - —-11-32-21
123712171223292 1103 — 23 — 11
1221137147137 193719431 - —-11-32-21
122371211237 193 2-23-21
12347 13271134292 -1 -13-23-11
127133271317 12-139-! -3 -11-33-21
1271122332312 0 1103 — 23 — 21
13227113273 -4 -12-33-11
171217 14713719423429231 -1 - 12 -33-21
17123321 121713712 -2 1-23-32-1
1-1217237 121712232 —4 -12-33-21 6
12322721321 -2 1-24-32-1
171237121123~ 192 -3 - 12 -34 - 21
137223711712123 712 -4 - 12 -43-21
1712237 122171931 19 -2 1-24-33-1
1712317121713223 19 -2 1-34-42-1
1732112231213 -4 —13-44 - 21
121327 112-13127! -4 - 13-54-31

13247 1271123293143 19 0 1020301
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Braid Word Py(W) w A/N
4 1712337193217 123 1 2-23-11
5 1271327131743 712-1432°! -4 - 11 — 42 — 21
4 1223222171937 19 0 1104 — 34 — 21
5 17137124321 1223421 -1 -13-34-21
4 132713127 11327! -2 1-45-53-1
5 17'2247134-12-113-1934 132 -3 1-23-32-1
4 1332713172271 -3 -10-1 N,1
4 121222327 11271371 1 1-11
4 1 '217'327132237! -2 - 11 -11
4 12711323321 0 1-12-11
4 1321°'371'2132°! 0 -10-1
4 17'23171'21 1232 -2 1-22-2
4 122713221 71371937 12 -1 -13-12
4 1222321 1223271 0 1103 — 12 1
6 1247 1'5713719171345-1439 -2 -10-10-10 -1
3 1271'12°! 0 10101 — 11 — 1
6 137'2711572934"15324 1 -4 -10-20-20-1
5 1243232711714 139 -5 -11-20-20-1
3 17221196 -1 102 — 12 — 11
4 1271'31712-1171396 1 1-22-21-1
5 13712711234713471329 -1 -12-22-21-1
4 1°327 11372271 -2 -10-11-21-1
3 173217125 -3 -11-22-21-1
5 1137143221237 19471371931 -3 1-22-22—-11
5 1°2371271143%27134 -3 -10-32-31-1
4 1221713294371 -2 1-13-23-11
6 12371217 1371452435 12241 -4 -11-42-31-1
4 17'2171322437 19 1 2-924-32-1
4 17132713%2711729 -4 1-12-23-11
5 1271172327147 134232 -3 -1-32-31-1
3 142711274 -5 1-12-22-11 A
5 1324237 127141723271 -3 -1-33-32-1
4 17227 113%27132-! —4 1-12-33-21
5 1713712334234 1112 -1 -11-21-21-1
4 171217132937 194 1 2-923-21-1
4 1732321712331 -4 -11-32-31-1 8
4 17'2171933719] 132 -2 1-24-33-11
5 171237192)2934 134! -1 -12-33-31-1
4 1713223371921 19 1 2-34-42-1 7
4 12237 127312112321 -4 -12-43-31-1
4 1722371234112 -2 1-24—44-21
5 1223712171471347239 -3 1-23-23-11
5 12713471327 111971391433 -3 —11-43-42-1
5 12237121713%431937 1419 -1 - 13-34-32-1
5 12221 4371472371931 -5 1-13-33-21
4 171'2371921237392 -4 -12-44-32-1
5 12713471327 112271342 -5 1-23-43-21 A
5 17'4723221247137193 -3 1-12-12-11
6

1712371937145 1451127134192 _ 4 -11-32-31-1 8
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Knot Braid Word Py (W) w A/N
10, 5 123712234 1347117132 -1 -12-23-22-1

10,, 5 1437147223722]227! -5 1-13-33-11 A
10, 5 1%437'2723%237!17 19 -1 -12-33-32-1

10, 4 1 '21 '233 1233 1 2-34-32-1

10,, 4 1221°1!2237121372 -2 1-25-44-21

10, 5 127'327'171471327134327132 -3 —12-44-42-1 9
10,, 5 127'172347122347°23 -5 1-34-54-21

10,;, 5 17'237'47 12372123 14 1322 -5 1-24—44-21 A, 10
10, 5 17'271327134%1237127%3 -3 -12-45-43-1

10,; 5 137'237'2437'17'237'247'3712 -5 1-34-64-31 A
10, 3 17'2517 193 0 101 —11-21 -1

10,, 3 152711%2°2 -1 103 — 13 — 11

10, 3 17221732 -5 1-13-23-11 N
10,, 4 1*32°312°! 0 11113 — 24 - 32 — 1

105, 4 1 '22371'2321°193 1 2-33-31-1

105, 4 1223721 '2237 192 -2 1-25-34-11

105, 4 172271322713%127! -4 1-13-34-21

105, 5 127'3%421 13227131 14292 0 1104 — 35 -32 — 1

105, 4 1722713%2713%1719 -4 1-13-23-11

1055 5 17 '43421323%4°1327! 0 1103 — 24 — 32 — 1

1055 4 17'223%2271317193 1 2-34-42-1 7
105, 4 13237217'223712 -2 1-25-45-21

105, 6 125 '437'23714"'571127134 -4 —11-43-42-1

105, 5 122417237437 '27134237! -3 —12-45-42-1 11
10, 5 17222127'34713271327143 -4 -13-55-42-1 12
10, 4 1211723327133 -2 -10-21-21 -1

10, 3 12231 1'9¢ -1 103 — 23 — 11

10; 5 122321 '437'27134232 0 1103 — 24 — 22 — 1

10, 3 173%2%1 193 -3 -11-33-31-1

10 4 1322317 '2713%1 1272 -2 1-24-34-11

10, 4 1223712212713%2 0 11113 - 35 — 43 — 1

105, 5 17'247'371247'12322%¢43~! -1 -12-34-32-1

105, 5 17'2371421297132%4713-2 -3 1-23-33-11

106y 5 134237 !4272172323 -2 1-35-55-21

10,, 5 1271'3%1722%4-134"! -3 —11-44-42-1

10, 5 12472271371923-14- 193119 -5 1-24-54-21 13, N
10, 4 1327112237193 19 1 2-35-43-1

10,, 5 127'3%147132713432°! -2 1-35-54 —21 14
10,, 5 1 '4237'247137121%471322 -1 -13-34-31-1

10,5 5 127'1327'34327!347 12! -4 —13-45-42-1

10,4 4 122711713%27112713° 1 1-33-42-1

10,, 4 17'23372129237! -2 1-14-34-21

10, 5 1724327'13%4713233 1 3-35-32-1

10,, 3 1327212973 -5 1-14-34-11 A
105, 4 12237'2217123322 0 11113 - 35 — 42 — 1

10, 5 17227217137124%23% -5 1-25-55-21 15, A
105, 3 1*272127'127! -3 -12-34-32-1

10g; 4 17'237'237221%2237! -4 —13-55-42-1 12,2
105, 4 132237'2171371237! -2 1-25-55-31
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Knot Braid Word Py (W) w A/N
105, 3 171'2%171lo1- 194 -1 1-13-33-21

104 4 1223719237121713712 -2 1-35-54 —21 2,14
105, 4 13371'237!171237193"! -4 -12-45-43-1

10, 5 122714713127'327 14371712371 -5 1-35-75-31 A
104, 5 1237'217'4237'24374 -2 1—46 — 65 — 21

10,, 4 123272122711271317!2-! -4 —12-54-42-1

10, 3 132721272127} -5 1-24—44-21 N,10
10, 4 132237!217123712 1 3-46-53-1

10, 4 1723%271312713227! -4 1-23-44-21

10,, 3 1327122721271 -3 —12-44-42 -1 9
10, 4 172237 '217'223%2 -2 1-36-55-21

106 5 123714213271372437! -4 -13-65-52-1

10,, 5 1%271347'2217137123%4 12 -1 -13-46-43-1

10, 4 17'223%2171223712 1 3-45-52-1

104, 3 1722122217122 -5 1-25-45-21 A
10,5, 3 132711227 112971 -1 1-14-34-21

10,5, 5 171322143233%437 172! 0 1104 — 36 —43 — 1

10,5, 4 122371217137121372 -4 12 —44 —42 - 1

10,5, 4 1?22371923711-1923-1 -2 1-25—44 21

10,,, 3 122731227 11271 -5 1-24—54—21 13, N
10,05 5 17'27'327'4132713%23 12! -3 12-56-53 -1

10,6 3 1327212271271 -3 12-45-42 -1 11
10,,; 5 14327'3%4371'2721 12713271 -5 1-35-65-—21

10,0 4 1723%27'132271327! -4 1-23-43 —21

10,0 3 172221722217 12 -5 1-25-55-21 15, A
10,,, 5 137'237'47132%127 13714712 -3 12-55-52-1

10,,, 4 1222371221 1923719 1 3-45-42-1

10,,, 3 132 '1271127 127! -3 13-46-43 -1

10,,, 4 13237'217123 123! -2 1-36—176—41

10,,, 4 1 '27'32713272123 1232 -4 13-56—-43-1

10,5 5 17'23471327 11714342 13272 -5 1-36—-176—31 A
10,6 3 1227'12-1127 11227} -3 13-56-53-1

10,,; 4 17'23712122371223"! -2 1-36—66—31

10,5 3 1227'127%127 1127} -5 1-35-65-31 A
10,,, 4 1?237%21°'37123 2 -4 13-66—-53—1

10,50 5 12234711327131714232237! 0 1105 - 57 - 53 — 1

10,,; 4 17'23712371212237 12 -2 1-—47-76 - 31

10,,, 4 1271327132711 1271321192 -4 13-57-54-1

10, 3 127'127'127 1127112t -5 1—46 — 86 — 41 A
10,5, 3 12512° 0 1112111

10,55 3 17127317195 -4 10101 N
10,56 3 127°12° 0 20201

10,,, 3 1°217292 0 11-12-21-1

10,54 4 1232232217132 0 1111201

10,0 4 1232723221321 -3 1-12-11 5
10,5, 4 1712373212232 -1 10201

10,5, 4 17'2332122372 0 1-12-21-1

10,5, 4 17!231327332 0 1101 1,4,18
10,5, 4 171323221237 127113712 0 101 —11-1
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Knot Braid Word Py (W) w A/N
10,,, 4 122123321-1223! 0 11112 - 12 — 1
10,55 4 122327117327132 -3 2-23-11
10,56 4 122371!217 192371972 -3 -1 -1
10,;; 5 12327'1271317147 1327132714 -2 -11-21-1 16
10,5, 5 12327'1271341°137 193 194! -3 -11-32-2
10,59 3 122312212 0 111211101
10, 4 127'1373233%2 1 101
10,,, 3 173212271122 -2 -11-11-1
10, 4 1713%23%122 0 1111202
10,,, 3 1712217221292 0 2-12-11
10,,, 4 123221 '23721271 -1 -22-32-1 17
10,5 4 122171371213223 0 1101101
10,6 4 122713722212-1391 -3 1-22-21
10,,, 4 1'272322%1297 11713712 -3 -1 -22-1
10,4 3 122517221712 0 2-13-11
10,4 3 172231322 0 11-13-32-1
10,5, 4 12223217 127132271 1 2-22-1 18
10,5, 4 1237221327237 12 -2 1-24-—22
10,5, 3 12231322 0 1112111 — 11 — 1
10,5, 4 122372272137 192 -4 101101
10,5, 4 1271322212322 0 111111 — 11 — 1
10,55 3 13217221722 -2 —11-21-1 16
10,56 4 17'23223172237 12 -2 1-23-21 18
10,5, 3 171'22122711292 0 11-14-33-1
10,55 4 122317'27232723 -4 -12-42-2
10,5, 3 127'127112%127! 0 2 —23 -2l
10,40 4 12321227 112711371 1 2 — 12
10, 3 17!2122%122 0 11111101 3
10,4, 4 1723271321223271 -1 -22-31-1
10,4, 4 1271317121227 112713 -2 1-34-32
10,45 4 1723721271127 1132 -3 2-33-21
10,6¢ 4 1223712112321 19 0 1-13-22-1

Notes:

1. MFW braid index inequality not sharp. Answer, if known, from [33].

2. These two knots are interchanged from Rolfsen’s table, to make the Alexander polynomials correct.

3. This is the same as 10,4, of [37).

4. Compare 5, — 10,5, same V, same P.

5. Compare 83 — 10,59 same V, same P.

6. Compare 8 4 — 10,55 same V, same P.

7. Compare 10,5 — 1055 same V, sameP.

8. Compare 105, — 1055 same V, different A.

9. Compare 10, — 10y, same V, different A.

10. Compare 10,3 — 10g, same V, different A.

11. Compare 1055 — 10,6 same V, different A.

12. Compare 104, — 10g; same V, different A.

13. Compare 105, — 10,,, same V, different A.

14. Compare 10,5 — 1044 same V, different A.

15. Compare 10g;, — 10,49 sameV, different A.

16. Compare 10,3, — 10,55 same V, different A.

17. The uppermost crossing of [37] has been changed.

18. Braid index obtained by Morton by showing braid index of a 2 cable = 8.
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