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1 Introduction

An array of invariants for closed 3-manifolds and for links in 3-manifolds has been
revealed by Witten [17] using the inspiration of quantum field theory. When the
3-manifold is the 3-sphere, these link invariants are essentially the Jones
polynomial (or one of its generalisations) of the link, evaluated at various complex
roots of unity. A proof of the existence of such invariants has been given by
Reshetikhin and Turaev [14]. Building on Kirby’s theorem [7] concerning the
different ways of obtaining a 3-manifold via surgery on the 3-sphere, they use deep
results from the theory of quantum groups and the representation theory of Lie
algebras. This paper gives an alternative approach, based on only the general
outline of their method. The result obtained here establishes those new invariants
that, in other interpretations, correspond to the Lie group SU(2). This proof of the
invariants’ existence, which also starts with Kirby’s theorem, uses Kauffman’s
(easy) bracket invariant [5] of regular isotopy classes of planar link diagrams. The
behaviour of this invariant at roots of unity is explored using the discipline of the
Temperley-Lieb algebra [1, 6] (that is also used in statistical mechanics in the
calculation of the partition function of the Potts model), and the results are
blended with some of the elementary tricks of linear skein theory [11]. The results
needed (and here proved) from the Temperley-Lieb algebra are implicit in work of
Jones [4] which appeared before the advent of his Jones polynomial (see also [3]).
Of course, the Kauffman bracket is but a clever reformulation of the Jones
polynomial. The nature of the 3-manifold invariants is described in a fairly simple
way, but calculations are by no means easy and will not be attempted here. Some
of these calculations have been performed and discussed by Kirby and Melvin [8]
using some of the few (sixteen) roots of unity at which the Jones polynomial can be
expressed in terms of more classical invariants; they do at least show that the
invariants are not trivial.

The paper is, apart from its use of Kirby’s surgery theorem, intended to be
entirely elementary and self-contained. Much of it is but an exercise in elementary
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linear algebra. It is a pleasure to record gratitude to V.F.R. Jones for
correspondence, to H. Wenzl for very helpful conversation, and to K. H. Ko and
L. Smolinsky for their result [9] that confirmed the conviction that the general
methods of this paper would work. An early version of this paper using their work
has appeared elsewhere [13].

2 The invariant described

The statement of the main result of this paper will be in terms of the bracket
polynomial invariant of Kauffman [5, 12]. The bracket is a function

¢ ):{Diagrams in R2Uco of unoriented links} »Z[4*']
that is defined by three properties:
i) <@r=1,

(ii) (?u U;=5(D>, where U is a component with no crossing at all and
o0=—A"*“—A4%

(iii) < <> = A< =X >+A<D ¢ >, where this refers to three diagrams
identical except where shown.
[The normalisation of (i) is not entirely standard.] It is very easy to show
(see [5] or [12]) that (D) is a regular isotopy invariant (that is, it is unchanged
by both the second and third type of Reidemeister move shown in Fig. 1) and
that its interaction with the third type of move is described by the equation
<> = -A3<)>. Further, if D, and D, are disjoint diagrams it is clear that

{DyUD;)=L{D)<{Dy).

o) N o) AKX

Fig. 1 Type 1 Type 2 Type 3

If Lis an oriented link in S? represented by the diagram D, let w(D), the writhe of
D, be the sum of the signs (+1) of the crossings. For reference only, the Jones
polynomial V(L), usually expressed with variable t=A"*, can be defined by the
equation . :

SV(L)=(—A)~3"®D).

This is invariant under all three types of Reidemeister move and so is an invariant
of the oriented link.

Various planar diagrams of links and parts of links will appear in what follows.
A non-negative integer i beside a curve will signify the presence of i copies of that
curve, all parallel in the plane. That is illustrated in Fig. 2.

Figure 3 shows a pair of diagrams (of the Hopf link of i+ components) which are
regularly isotopic and so have the same bracket polynomial; let T;. ; denote the

Fig. 2
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bracket polynomial of either of these diagrams.

i (o) Q@

The bracket takes values in the Laurent polynomial ring Z[A*!], but in what
follows it will be evaluated when A is a specific root of unity, so that the bracket
may be thought of as having complex number values.

It is well known [10] that any closed oriented 3-manifold M3 can be obtained
from the 3-sphere S° by surgery on a framed (unoriented) link (L, f). Thus, to each
component L, of L is assigned a “framing” which is an integer f(s). M* can be
constructed by the following process. Remove a small open solid torus neighbour-
hood of each L. On each resulting toral boundary component consider the simple
closed curve that represents f(s) meridians and one longitude of L; attach new
solid tori so that each of these (framing) curves now bounds a disc. A link diagram
DinR2U oo will be said to represent (L, f)if D is a diagram for L in the usual sense,
and, denoting by D, the part of D corresponding to the component L, w(Dy) = f(s)
for each s. [Note that w(D,) is independent of any choice of orientation as D,
represents a single link-component.] Thus for each component the sum of the
signs of the crossings encodes the framing of that component. Of course, any
diagram for L can be modified, by inserting small “kinks” in its components, to
represent (L, f). Framed links (L, f) and (L, f”) in S® are ambient isotopic if there is
an ambient isotopy (that is, a movement of the “strings” in 3-space) sending L to L’
such that the framings on corresponding components are equal. The following
useful result follows at once from a theorem of Trace [15].

Fig.3

Proposition 1. Suppose that framed links (L, f) and (L, f') are represented by
diagrams D and D'. Then (L, f) and (L, f') are ambient isotopic in S* if and only if D
and D' are regularly isotopic in R*Uco.

Hence the bracket polynomial of a diagram of (L, f) is an ambient isotopy
invariant of the framed link (L, f).

It is convenient to explain some notation before stating the theorem. If D is a
link diagram with D,, D,, ..., D, corresponding to the link’s components,and cis a
function, c:{1,2,...,n}»Z,, let ¢ * D be the diagram in which each D, has been
replaced by c(s) copies all parallel in the plane to D,. Note that if D and D’ are
regularly isotopic then so are ¢ * D and ¢ * D'. Usually ¢ will be restricted to C(n,7),
the set of all functions c:{1,2,...,n}—{0,1,...,r—2}. If the framed link (L, f) is
given an orientation, the linking numbers of the pairs of its components form a
symmetric matrix in which £ (s) is taken to the linking number of L, with itself. The
signature and nullity of this matrix are independent of the choice of orientations.
The nullity of the matrix is, in fact, the first Betti number of the 3-manifold
obtained by surgery along (L, f). Recall that T;,; is the bracket of the diagram
shown twice in Fig. 3.

The following theorem is, then, a version of part of the results of Witten [17] as
interpreted by Reshetikhin and Turaev. For any primitive 4r* root of unity it
produces an invariant of 3-manifolds, a complex number that is, in fact, in the field
over the rational numbers generated by the 47 roots of unity.
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Theorem. Let r be a (fixed) integer, r=3, and let 6= —A~2— A% where A is a
primitive 4r™ root of unity.

(i) There is a unique solution Ag, A, ..., A, _ , in the complex numbers to the set of
linear equations

|

2
Ai’I:_l_j:&j, j=0,1,...,r—2.
0

r

[

(i) Suppose that M? is obtained from S by surgery on an n-component framed

link (L, f), for which o and v are the signature and nullity of the linking matrix;
suppose that (L, f) is represented by the diagram D. Then the expression

ag+v—n

k 2 ) )Ac(l)'lc(Z}“' Aw<c* D),

ceC(n,r,

r—2
where k= Y AT, is an invariant of the 3-manifold, a complex number independent

i=0
of the choice of (L, f) or of D.

Notice that, in calculating the invariant as described in this theorem, it is
necessary to calculate (¢ * D). If r=6 and D is just the 3-crossing knot, a diagram
of four parallel copies of the knot has at least 48 crossings; naive calculation of the
bracket polynomial (direct from its definition) would then involve 2*® operations.
Of course, for particular types of link, and also for special values of r, there are
more subtle methods; nevertheless, calculation often poses considerable problems.

The theorem of Kirby [7] describes how framed links are related if they
represent (via surgery) the same 3-manifold. That theorem, as refined by Fenn and
Rourke [2], will now be interpreted by means of diagrams. It asserts that framed
links correspond to the same 3-manifold if and only if any diagrams that represent
them are related by regular isotopy and by the equivalence relation generated by
moves of two kinds. In the first move diagram D is related to D' as shown in Fig. 4i;
D’ is obtained from D by inserting an extra unknotted component D, ,, with
w(D, +,)=1,and adding a positive twist in the strands linked by this component in
the way depicted. In the second kind of move, shown in Fig. 4ii, D is related to D"
where D” is D together with an extra component D), that is unknotted and
disjoint from D, with w(D;, , ;)= — 1. (The moves of [2] include a “negative” version
of the first move; a proof of the above simplification, due to Turaev, appears in
[13].) Employing this result, a 3-manifold invariant comes at once from any
quantity associated to link diagrams in S? that is invariant under regular isotopy
and under the two types of move described above. The proposed invariant of the
theorem is not changed by regular isotopy as the bracket is invariant under regular
isotopy. Thus, invariance under the two (Kirby) moves is all that has to be proved.
This will be established in the final section of the paper. The proof will use a
combination of linear skein theory [11] and some (possibly surprising) facts about
the bracket polynomial when the variable A4 is a root of unity. These ideas will be
developed in the next section.

® D X D' : X “Q,{@ n+l

j j

Dx'{+l

Fig.d (i) D X D" X @
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3 The Temperley-Lieb algebra

A simple version of linear skein theory (see [11]) will now be described. Consider a
square in RZuUco with m specified points on its left edge and m such points on its
right edge. Consider all tangle diagrams in the square (i.e. link diagrams in which
components may be arcs) with the specified points as boundary. Figure 5 shows an
example when m=3.

D=

/ et
@A

Fig. 5 o&

Let V, be the module over Z[A*!] freely generated by all such diagrams
quotiented by relations of the form

(i) DuUU=8D, where as usual 6=—A"2—A42%,
(if) (X) = AC)+AT0 O

As before, in (i) U is a closed component of the diagram that contains no crossing
(one such component is in Fig. 5), and in (i) the diagrams in parentheses are the
same except where shown. Of course, equalities in this module are thought of as
partial calculations of bracket polynomials, and regularly isotopic diagrams
(keeping the boundary fixed) represent the same element of V,,. When a non-zero
complex number is substituted for 4, ¥, becomes a vector space over the complex
numbers. The placing of one diagram beside another, as in Fig. 6, produces at once
a third diagram of the same nature.

DD,| = |pyD

Fig. 6

A

This operation induces a bilinear map V, x V,,—V,, so that, with respect to this
product, ¥, becomes an algebra. Now as a vector space, ¥,, has a base consisting of
all (elements represented by) diagrams in the square with no crossing and no closed
component. Although it is not needed here, observe that the dimension d,, of V,, is

the Catalan number ! <2m) That is so since d,,, ;= Y, did,,—; and hence, if
m+1\m o i=0
#(z) denotes the generating function ¥ d,z, then z¢(2)? = ¢(z)— 1. Thus 2z¢(z)
i=0

=1—)/1—4z and the formula follows from the binomial expansion. For V; the
base is shown in Fig. 7. ¥, has dimension one, the empty diagram, denoted 1,,
being a base; any link diagram in IR? can be regarded as being an element of ;.

DCDCD\C%

€2¢

Fig. 7

e
€y 2
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As an algebra V,, is generated by the elements 1,,,¢e,, ¢, ..., e, that are shown in

Fig. 8

Im

Figure 8, so every element of V,, is expressible as a linear combination of products
of these elements.
For i, j=1,2,...,m—1, these generators satisfy the relations

1,e,=e,=¢]l,,
ef =de;,
ee;j=ee; if [i—jl=22,
ee; 4 ¢;=e; provided e, , is defined.
Up to scaling, V,, is the m™ Temperley-Lieb algebra, 6 being a parameter in C.
Following Wenzl [16] and Jones [4] (see also [3]) and guided also by Ko and

Smolinsky [9], consider for each n= —1, the polynomial function 4, of degree nin
é defined recursively by

An———éAn_l““An_z, A0=1 and A..1=0.
This 4, is, in fact, the n' renormalised Chebyshev polynomial of the second kind.
For each n<m—1, provided A (and hence 8)is chosen in Cso that 4,4, ... 4,0,
define f,eV,, by fo=1,, and

f;r=fn— 1 —’(An— 1/An)f;|— leﬂf;l— 1-

It follows easily, by induction, that f,—1, is in the (proper) subalgebra
A(e,, e,, ..., €,) generated by e;, e,, ..., e,. In particular, f, commutes with each of
€y+2:€p435+-:€m—1-
Lemma 2 [16]. Suppose 6 is such that, for some n<m—1, 4,4, ... A,#%0. Then
inV,,

(1) =5
2, e.f,=0 forall iZn,
(3») (en+ 1fn)2=(An+ /A)en i1 fn provided n=m—2.

Proof. The lemma is clearly true when n=0. Inductively suppose it is true for a
given n, and then suppose thatn+1<m—1and 4,4, ... 4, , +0. This means that
f1s 25 -+ fu+1 are all defined.

(s Df"H=(fa—(44/ 4+ Dfven+ 1S
=j;l—2(An/An+l)f;len+lf;|+(An/An+1)2f;ten+lfnen+lf;t (by 1,)
=f;l—'(An/An+ l)f;len+lj;l (using 3n)
=f.4.
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(2,+1) If i<n, then
eifnr1=e{fi—(4/Ans Dfsens 1 /=0 (from 2,),
en+1f;l+1=en+lf;l_(An/An+l)(en+lf;x)2=0 (from 3n)

(3,+1) Suppose that n+1<m—2.Recall that e, . , f,=f,e, ., and note that (by
1,) fufas1=So+1. Then

(en+2f;l+l)2=en+2{f;l_(An/An+ Dfvens1folens2fust
=0ys 2 fut1—(A/Ans )fv€ns26n+ 1€ns2fns1
=(0—(Aw/4n+1))€ns 2 us1
=(Ap42/Ap+1)€n+2 ns1, using the definition of 4, .

In this context, the above lemma might be regarded as technical. Its usefulness
will be seen in its interaction with the Markov trace on the Temperley-Lieb algebra
V,, defined in the following simple way. If D is a tangle diagram in the square
having m endpoints on each of the left and right edges of the square, D represents
an element [D] of V,. Then tr[D] is the bracket polynomial, evaluated at the
chosen value of 4 in €, of the link diagram formed from D by joining the points on
the left edge of the square to those on the right by arcs outside the square that
introduce no new crossing. This idea (analogous to the closure of a braid) is
illustrated in Fig. 9.

m

Fig. 9 D] =< @ >

This clearly induces a well-defined linear map on the vector space Vo, because the
relations used to define V,, are essentially the formulae _that characterise Fhe
bracket polynomial. It is then clear that this trace function has the following

properties.

tr: V,,—»C is linear,
tr(xy)=tr(yx),
tr(1,)=90",
dtr(xe)=tr(x) if xeU(l,epez...en- -
The following lemma calculates the trace of the element f, constructed above.
Lemma 3 [16]. Suppose & is such that, for some n<m—1, 4,4, ... A4,%0, and f, is
the element of V,, defined above. Then
tr(f)=0""""14,44.
Proof.
tr(f) =tr(fo-1)—(4p-1/40) tr(fo- 1€afa-1)
=tr(fo-1)—(4p-1/44) tr(f,2 1€,
={1—(d,_ /AN tr(fo=1), 88 foo1€U(1,,e1,e5,...08,1).
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So

tr(fo) =(4n+1/04,) tr(fo- )
=(Aps 1/ N(fo)=0" """y
It is now time to check up on when 4, is zero, so the following elementary lemma is
included here for completeness (it is also proved and used in [9] and [3]).

n kn
Lemma 4. 4,= 0—2cos—— ).
" kI=-[1 ( oy + 1)
Proof. Recall that 4,=64,_,—4,_,, 4-,=0and 4,=1. Clearly 4, is a monic
polynomial of degree n in d. The substitution d=x+x~' makes 4, a rational
function of x, and

4, —x4,-, =X—‘(A,,_1 —X4,-3).

Repeating this n times gives

A"—XA,,_1=X—".

Using the symmetry between x and x !

-1 —
An_x An—l_x s

so that (x —x~1)4,=x"*1—x~®*1 Thus 4, is certainly zero when x"*! =x~(*+1

but x=+x~ L. This occurs when x=e"*"*1 and hence when 6 =2coskn/n+ 1, for
k=1,2,...,n (Note that

6 1
1 6 1
1 6 1 —1)"si
4,(6)=det and A"(—Zcosﬂ)=g—%0n+1)e.>
.1
1 9

The above lemmas now combine to give the result needed in the linear skein
theory applications. It will be important to consider 1,,: V,,— the element in the
dual space of V¥, dual to the base element 1,,; so that, in particular, 1,, maps any
diagram in the square to the coefficient of 1,, in its expansion as a linear sum of
diagrams with no crossing and no loop. Also of key significance is the bilinear form

iV x V,»C

defined from the trace in the usual way by {x,y>=tr(xy). This, in the case of
diagrams in the square, can be thought of as the operation of placing one diagram
inside a square, the other outside the square, and calculating the bracket
polynomial of the resulting link diagram using the prescribed complex value for 4.

Proposition 5. Suppose that, for some r22, A is a primitive 4r™ root of unity.
(i) For mgr—2, let p(m)=(4,)) "' fru-1€V,, and p(0)=1,. Then

,pm)d =1 .
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(i) If m=r—1 let qm)=(1,,—f,—,)€V,. Then q(m) is in the sub-algebra
A(e,e5,....€,_2) of Vi, the bilinear form {,»:V, xV,—C is degenerate, and
G ampy = 1.

Proof. First note that if AZ=¢", 4,= [[ —2 <cos9+cos ;1%) .Soif —m<0<m
k=1

A, is zero if and only if 0= +kn/(n+1) for k=n,n—1,...,1. Thus, when Alisa

primitive 2r' root of unity (r=2) 4,4, ... 4,_,#0 but 4,_,=0.

(i) For 1<m=r—2, consider the element f,,_, in V,, defined previously; the
definition is valid because 4,4, ...4,_,+0. From Lemma 2, e;f,_,;=0 for
i=1,2,...,m—1.If bis any base element other than 1,, of ¥,,(qua vector space), b is
some product of these e;. Thus <b, f,,— > =tr(bf,,—;)=0. On the other hand,

<1m’fm—l>=tr(1mfm—1)=tr(fm— l)= Aps
by Lemma 3, and this is not zero since m=<r—2. Hence p(m) has the required
property.

(i) When r—1<m, 4,4, ... 4,_, %0, so that the element f,_, is defined in
V,_,. As before, if b is any base element other than 1,_; of ¥,_;, <b, f,—,>=0 and
Ay sy foesd=4,-1=0.Hence {, f,_,> is thezeromap V,_; »C. If nowm>r—1,
there is a natural inclusion of V,_, into V, induced by taking a diagram
representing an element of V,_; and adding m—r+1 parallel horizontal arcs
immediately above. In this context the e; and f; notations are unambiguous for
i<r—2.1f then D is a diagram representing [D] in ¥, let D’ be the diagram shown
in Fig. 10 representing the element [D'] in ¥,_,. Then

[D1, fi-2>=<[P), £;,-2>=0

(where the first use of ¢, » is in ¥, the second in ¥,_).

m-r+l

r-1 -1

Fig. 10

Hence  , f,_,) is the zero map V,,—Cso that, as f, _ , is non-zero, the bilinear form
is degenerate. Hence q(m)=(1,—f,_ ) has the required property.

4 The invariant established

There are two parts to the statement of the theorem. The first, concerning the
existence of a unique solution to some linear equations, requires that a certain
square matrix be shown to be non-singular. This will be proved in Proposition 8.A
preparatory lemma now follows. Let x,, be the element of V,, shown at the
beginning of Fig. 11.

Lemma 6. If A%=¢®, then, for all m20, 1,(x,)= —2cos(m+ 1)6.
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Proof. Consider the equalities in V,, depicted in Fig. 11.

m m-1 M\ 2 m-IO——
*n = 01 e S TS,

m-1
Fig11 = (1-AYA2|m2 N\ | + (l‘A’xl-A")_/—m'ZIE v AT OT
| 1

Now 1,, is clearly zero on the middle of the three terms in the last line of Fig. 11
because any further expansion will never achieve m arcs going from the left edge to
the right. Thus there results the following recurrence relation (by repeating, on the
first term of the last line of Fig. 11, the last expansion m—2 times)

L) =(1—AH(A)" + 4721, (X 1),
where 15(x,) is to be taken as é. The solution to this recurrence relation is
L (xm)=—A>™*2 — 472" 2= _Dcos(m+1)0.
[Note that when e® is a primitive 2r't root of unity the 1/(x,,) are distinct for
m=0,1,...,r—2.]
Corollary 7. 1,,(x%)=(—2cos(m+1)f).

Proof. This is immediate because an expansion of x, as a linear sum of basis
elements can be started by expanding each x,, factor. Only the 1,,-term in x,, can
contribute to the 1,-term in x;,.

Proposition8. When A is a primitive 4r'" root of unity the matrix
{T;+;;0 <i,j<r—2} is non-singular.

Proof. Recall that T;,; is the bracket of either of the link diagrams of Fig. 3.
Suppose the matrix {T;, ;; 0<i, j <r—2} is singular. Then there exist y; € C, not all
zero, such that

2
wT ;=0 forall j=0,1,...,r-2.
0

i=

Consider the elements of V; shown in Fig. 12.

j il YN in
2 61 e FEH

Fig. 12

Now, T, ;=<1;, z;y;,:;», s0

r=2
Z [t,(i_,,zly]’,>=0 fOl’ all j=0,1,...,l’—-2.
i=0
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Suppose that b is any base element of V;. Consider the annulus, shown in Fig. 13,
containing a square with j parallel arcs joining the left and right sides of the square
as shown.

Fig. 13

Inserting b into this square would produce a configuration of disjoint simple
closed curves. These may be isotoped in the annulus to o, say, standard mutually
parallel curves encircling the annulus and  small nul-homotopic curves (which
may be nested). Note that a< j. But, <b,z;y; ;> is the bracket of the diagram
obtained by inserting b into the square of Fig. 14.

@

Then <b,z;y;, ;> =1 ZaYa, .>8%. This is because the isotopy in the above prototype
annulus induces a regular isotopy in an immersed annulus (a neighbourhood of
the j strands and the square) in the diagram consisting of Fig. 14 with b inserted; at
the end of the regular isotopy there are o strands going around the immersed
annulus and B small circles with no crossing. (This annulus trick will be used
several times more.) Thus

r—2 r—2
‘;0 uh, 2595, = ,;0 110 ZoYa,109° =0.

Fig. 14

r=2
This means that, forall j=0,1,...,r—2, ¥ u;{, z;p; ;) is the zero map V,—»C. But
i=0

zj 'z; and 1; have regularly isotopic rep;esenting diagrams so zj 'z;=1;. Thus
0= :gz ﬂi(zj- !, Zj)’j,i> = :;: Ili<1ja Yj,i> .
This means that {{1;,y;>; 0=, j <r-—2} is a singular matrix. But
<1j, Yj,i>=<1i7zix'ii>
and so {<1;z;x}); 0=i, j<r—2} is singular. Hence for some v;e C, not all zero,
:g vi{1,2x5>=0.
F}(zactly the same argument as before, using the annulus trick, shows that

_20 v, zx') is the zero map. Hence if a is any element of ¥},
s

r—2 r-2
0= 2 vi<azj—1,zjxj.>= Zov,.(a,xj), for all j=0,1,...,r—2.
i=0 i=
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So far, no specific value of 4 has been used. If now 42 is ¢”, a primitive 2r® root of
unity, take for a the element p(j) defined in Proposition 5. Then

r—2 r—2
0= iz—:o vi(lxh)= i=20 v{—2cos(j+1)8)

for all j=0,1,...,r—2, using the result of Corollary 7. Hence the matrix
{(—2cos(j+1)0);0<i, j<r— 2} is singular. However, as * is a primitive 2r™ root
of unity, the {cos(j+1)8, j=0,1,...,r—2} are all distinct. The matrix
{(=2cos(j+1)0); 0<i,j<r—2} is then a Vandermonde matrix with non-zero
determinant

IT  2(cos(j+1)8—cos(k+1)6).

0= j,k=r-2
j*k

This, of course, contradicts the assertion that this matrix was singular.

Proposition 9. Suppose that A is a primitive 4™ root of unity (r=2), and that
205 A1s +., Ap— o are such that
r—2

I ATa=8,  j=01,..r=2.

-2
Then, for every j=0, .}: i» 2y, and (, 1;> are equal maps V;»C.

Proof. As T, ;={1;,2;y; >, the choice of the 1; means that for j=1,2,...,r—2,
i;()’li(lj,zjyj,t):éj:(ip1j>-

Suppose that, for j<r—2, b is any base element of V; and that inserting b into the
square in the annulus of Fig. 13 produces « curves encuclmg the annulus and B
small nul-homotopic curves with « < j. Then the annulus trick mentioned in the
proof of Proposition 8 shows that

r-2 r—2
'}: A<b, 25,0 = __Z A1y 2,90, 100 =8P =<b, 1;>.

Thus, Zi( z;y;,i>=<,1;> as maps of V; for j<r—2.

The propos1t10n is, then, true for j<r—2. Suppose that r— 1 <m and suppose,
inductively, that the proposition has been proved for all j<m. Let b be a base
element of ¥, other than 1,,. Once again, inserting b into the square in the annulus
of Fig. 13 (where jis replaced by m) produces a curves encircling the annulus and f
small nul-homotopic curves; here a is strictly less than m (because b+ 1,,). Then,
using the annulus trick yet again, and the inductive hypothesis,

r—2 ' r-2
Z )*i<b’zmym,i>= Z Ai<1a3zaya,i>6ﬂ=<1a’1a>5”
i=0 i=0

=6"*t=¢(b,1,).

Now, as r—1<m, the element q(m) of Proposition 5 exists. It is in the sub-algebra
Afe,, ey, ...,e,-,) and so is a linear sum of base elements other than 1,,. Thus by
taking that relevant linear sum, q(m) can be substituted for b above. However, from
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r—2
Proposition 5 {q(m), >=<1,, >. Hence Y Al 2V i>={1,41,> and so the
r—2 i=0

linear maps 'Z‘o 2K ZnYm,iy and {, 1,,> agree on all the base elements of V,, and

hence are equal on V,,. This completes the induction step and the proof of the
proposition.

Proof of the Theorem. The existence and uniqueness of the 4, have been proved in
Proposition 8. Also it has been noted that the expression for the proposed
invariant, given in the statement of the theorem, is indeed unchanged by ambient
isotopy of the framed link (L, f). Suppose now that (L, f) and (L, f’) are framed
links with diagrams D and D’ related as in Fig. 4i, L having n components. If
ceC(n, 1), let c;e C(n+1,r) be defined by c(s)=c(s) for s<n, and cj(n + 1)=i. From
Proposition 9

r—2
Y ALei*D'y={c*D).
i=0

Multiplying this by A,y --- A and adding gives
AetyAer@y -+ Aern+ p{c'*DH= ¥ )}-c(l))vc(z) v A< * D).

ceCm+1,r) ceCn,r
Thus, if X(D) denotes the expression on the right of this equation, X(D")= X (D).
It remains to consider the other basic move on framed link diagrams, namely
when D is changed to D", a new framed link that is equal to D except for the
insertion of an extra unknotted component, disjoint in the diagram from the
original components, and with writhe —1 (see Fig.4 ii). However, if diagrams D,
and D, are disjoint in R?Uco, then (D,uD,>={D,>{D,). Hence

X(D")=X(D) ;2: AT,

This is because the complex conjugate of T, ;is the bracket of the reflection of the
diagram of Fig.3 (when A4 is a root unity). Thus X(D")=xX(D). But the nxn
linking matrix of L has signature ¢ and nullity v, so 4(n— o —v) is the number of
negative entries in a diagonalisation of the matrix. That number is unchanged
when (L, f) with diagram D is changed (as in the first move above) to (L, ) with
diagram D’ and increases by one if the change is to (L", f”) with diagram D". Hence
ag+v—n
k 2 X(D)is invariant under both types of move, and the proof is complete.
The above ideas generalise at once to give invariants of framed links in the
3-manifold M3: Suppose that L is a framed m-component link in M3 where, as
before, M3 is obtained by surgery on the framed n-component link (L, f) in S3.
Then L can be regarded as a link with framing f in $°— L. Suppose that the
diagram DuD represents the framed link (LUL, fUf) and ¢: il,Z, e} Z,.
Then an invariant of the framed coloured link (L, f,¢) in M3 is given by the
expression

o+v—n

Kk 2 Y ),lcu,lc(z)...lc(,,,((cué)*(Duﬁ»

ceC(n,r,

cvaluated at a value of A that is a primitive 4r root of unity. Of course, if ¢ has all
values 1 and M3 is S3. this reduces to <D>.
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