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1. Introduction

The aim of this paper is to construct new topological invariants of compact
oriented 3-manifolds and of framed links in such manifolds. Our invariant of
(a link in) a closed oriented 3-manifold is a sequence of complex numbers para-
metrized by complex roots of 1. For a framed link in S the terms of the sequence
are equale to the values of the (suitably parametrized) Jones polynomial of
the link in the corresponding roots of 1. Thus, for links in S* our invariants
are essentially equivalent to the Jones polynomial [Jo].

Note that in general we do not know if our invariant of (a framed link
in) a closed oriented 3-manifold may be described as the sequence of values
of a certain polynomial in the roots of unity.

In the case of manifolds with boundary our invariant is a (sequence of)
finite dimensional complex linear operators. This produces from each root of
unity g a 3-dimensional topological quantum field theory (see [A1]). In particu-
lar, for each g we associate with every closed oriented surface a finite dimensional
complex linear space. We construct a projective action of the modular group
of the surface in this space.

Our constructions have been partially inspired by the ideas of E. Witten
[Wi] who considered quantum field theory defined by the nonabelian Chern-
Simons action and applied it to study the topology of 3-manifolds. Using this
quantum field theory, Witten has defined (on the physical level of rigor) certain
invariants of 3-manifolds and links in 3-manifolds. The constructions of Witten
strongly suggested that there may exist a parallel mathematical theory. We
believe that our invariants may be viewed as a mathematical realization of
the Witten’s program.

We use a rather down-to-earth approach to construct our invariants. Name-
ly, we use surgery to reduce the general case to the case of links in S* and
then apply the classical Jones polynomial and some derived invariants of links
in S3. The reduction of the topology of 3-manifolds to the theory of links in
§? is very well known. Indeed, each framed link L in S® determines a closed,
oriented, connected 3-manifold M, obtained by surgering S® along L. Each
closed, oriented, connected 3-manifold M is known to be homeomorphic to
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some M; by a degree 1 homeomorphism. Two manifolds M,;, M. are degree
1 homeomorphic if and only if the links L, L may be related by a series of
Kirby moves (see [K]). This suggests that one may construct invariants of 3-
manifolds by combining certain link invariants in an expression preserved by
Kirby moves. It was the idea to try the Jones polynomial and related invariants
which gave the initial impetus to our work.

The Jones polynomial is known to be intricately connected with the quantum
enveloping algebra of the Lie algebra sl,(C), and its fundamental representation.
Using other irreducible representations of the algebra, one may produce isotopy
invariants of colored links in S* where by coloring of a link we mean a function
which associates with each component of the link an irreducible representation
of sl,(C). This gives us a large stock of invariants of links in S* which are
used as groundstones in our constructions concerned with general 3-manifolds.
For previous work on link invariants see [Tu], [Re], [ReT] and references
therein.

The basic algebraic concept introduced and systematically used in this paper
is the one of a modular Hopf algebra. We show that each such algebra gives
rise to a topological quantum field theory in dimension 3. In particular, it pro-
duces numerical invariants of closed oriented 3-manifolds and links in such
manifolds.

We prove that for each root of unity g the quantum g-deformation of si,
yields a finite dimensional modular Hopf algebra. This gives the invariants of
links and 3-manifolds discussed above.

The paper is organized as follows. In §2 we recall the results of [ReT]
on ribbon Hopf algebras and the associated isotopy invariants of ribbon graphs.
In §3 we introduce modular Hopf algebras and construct associated homeo-
morphism invariants of closed oriented 3-manifolds and also isotopy invariants
of framed links and ribbon graphs in such manifolds. In §4 we use the results
of § 3 to construct operator invariants of 3-dimensional cobordisms. As an appli-
cation of this construction we get a projective representation of the Teichmiiller
modular group. §§5, 6, 7 are devoted to the proofs of the theorems stated in
§3. In §8 we briefly consider the modular Hopf algebras associated with the
quantum g-deformation of the Lie algebra sl,, g being a root of unity.

Acknowledgements. This work is the extended version of the preprint [RT]. The authors thank
V. Jones, A. Casson, R. Kirby, P. Melvin, G. Moore, N. Seiberg, E. Witten, D. Kazdan, L
Frenkel, H. Morton and A. Wasserman for interesting discussions and remarks. Parts of this
work were carried out while the first author was visiting the Mathematical Science Research
Institute at Berkeley and the second author was visiting the University Paris-Sud (Centre
d’Orsay). The authors thank these institutions for their kind hospitality.

2. Ribbon Hopf algebras and ribbon graphs

2.1. Ribbon Hopf algebras (see [Dr], [Dr1], [Rel], [Tul], [ReT])

Let k be a field of characteristic 0. Let A be a Hopf algebra over x with the
comultiplication 4: A - A® A, counit &: A -k and antipode y: 4 — A. Denote
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by P the permutation homorphism a®@b—b®a: AQA—>AR®RA. Let R be
an element of A ® A. Thus R is a finite sum ) o; ® B; with o;, ;€ A. Put

R12=R®1=Zdi®ﬁi®1eA®3,
R13=(id®P)(R12)=Zai® 1 ®ﬁi€A®3,

R23=1®R=21®d,®ﬂ,«€A®3.

The pair (4, R) is called a quasitriangular Hopf algebra if: R is invertible in
A®2; for any ac A

P(4(a))=RA4(a@) R,
and
(A ® idA)(R)=R13 R23a

(idA®A)(R)=R13 R12'

The element R is called the universal R-matrix of A. It satisfies the Yang-Baxter
equation

Ri2R{3R;3=Ry3R{3Ry;.
Note also the following important equalities
(2.1.1) R7'=(y®id)(R)=({d®7")(R).

With the quasitriangular algebra (4, R=)  o; ® ;) one associates the element

M=Z)’(ﬂi) o;

of A. This element is invertible and satisfies the following identities [Dr1, Rel]:

yX(@)=uau~! for all acd;

=T A =15

AW)=(Rz; Ry) ' u®u=u®u)(R;; Ry,

where R,, =P(R,,). Also, uy(u) lies in the center of A.
By a ribbon Hopf algebra we shall mean a quasitriangular Hopf algebra
(4, R) provided with a central element ve A such that:

(212 v=uy@w), y@®=v, e@)=1,
4A(W)=(Rz1 Ry,)” 'v®v).
Since u is invertible, v is also invertible in A4.

There exist quasitriangular Hopf algebras which do not contain v as above.
If v exists it may be non-unique. For examples of ribbon Hopf algebras see

§8.
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2.2. Category Rep A

With each algebra A over the field k one associates the category Rep A of
its finite dimensional linear representations. The objects of Rep A are left A4-
modules finitely generated over k. The morphisms of Rep A are A-linear homo-
morphisms. The action of 4 in any A-module V induces an algebra homomorph-
ism A4 — End V denoted by py, .

If A is a Hopf algebra then the comultiplication 4 in A induces a tensor
multiplication in Rep A: for objects V, W their tensor product is the vector
space V®, W equipped with the (left) action of 4 defined by the formula

pvew(@)=(py ® pw)(4(a))

for aeA. The antipode y: A — A enables one to define duals for A-modules.
Namely, for any A-module V we provide the dual linear space V'~ =Hom, (V, k)
with the action of 4:

py+(@=(py(v(a))*cEnd V¥

where ae A and the asterisque denotes the dual of a linear homomorphism.
If A is a quasitriangular Hopf algebra then all objects of Rep A are reflexive
up to a canonical isomorphism. Indeed,

Py (a)=PV(V2(a))=uV pv(a) uy L

where u, =p,(u) and where we have identified V> v and V via the canonical
isomorphism. In other words, the composition of the canonical identification
Vv ¥ - Vand the homomorphism x+ p, (u~') x: V- Vis an A-linear isomorph-
ism.
If (A, R, v) is a ribbon Hopf algebra and V is an object of Rep A we define
the quantum dimension dim, ¥ of V to be the trace over « of the linear operator

x—pyuv Hx: VoV,

For any linear operator f: V— V we define its quantum trace tr, f to be the
ordinary trace over k of the linear operator

CxppuvTY) f(x): VoV
Clearly, dim, V=tr,(idy).

2.3. Ribbon graphs

A ribbon in R3 is the square [0, 1]x [0, 1] smoothly imbedded in R3. The
images of the segments [0, 1] x 0 and [0, 1] x 1 under the imbeddings are called
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bases of the ribbon. The image of the segment (1/2) x [0, 1] is called the core
of the ribbon. Similarly by an annulus in R® we shall mean the cylinder S!
x [0, 1] smoothly imbedded in R3. The image of the circle S!x(1/2) under
the imbedding is called the core of the annulus.

Clearly, ribbons and annuli are orientable surfaces in R3. Note that orienta-
tion of such a surface is equivalent to a choice of one of its sides. (We fix
the right-hand orientation in R3).

If the core of a ribbon (or annulus) is oriented then we say that this ribbon
(annulus) is directed. Each ribbon and annulus may be directed in 2 ways and
may be oriented (as the surface) also in 2 ways. Note that the core of a directed
ribbon leads from one base to another base. The former base is called initial,
the latter one is called final.

Let k, | be non-negative integers. By a ribbon (k, l)-graph we shall mean
an oriented surface S imbedded in R? x [0, 1] and decomposed into the union
of a finite number of directed ribbons and annuli so that:

(a) annuli do not meet each other and do not meet ribbons;

(b) each ribbon is provided with a “type” 1 or 2;

(c) ribbons of the same type never meet each other;

(d) ribbons of different types may meet only in the points of their bases;

(¢) S meets (RZx0)uU(R? x 1) precisesly in some bases of type 2 ribbons,
and the collection of these bases is the collection of segments

{[i—%,i+31x0x0]i=1, ..., k}U{[j—%,j+4Ix0x1]|j=1, ..., [}

(f) the other bases of type 2 ribbons are contained in some bases of type
1 ribbons;

(g) in a neighborhood of SN (R? x0) and S (R? x 1) the preferred side of
S is turned upwards (i.e. towards the reader).

The surface S is called the surface of the graph. The type 2 ribbons will
be simply called ribbons, the type 1 ribbons will be called coupons. Those
ribbons which are incident to §~(R?x0) or SN (R? x 1) will be called border
ribbons.

It is convenient to think of coupons as rigid rectangles, whereas the (type
2) ribbons may be thought of as narrow flexible bands. Some examples of ribbon
graphs are given in Fig. 1, 3. Note that instead of drawing annuli it suffices
to draw their directed cores and to point out the so-called framings, i.e. the
number of right-handed twists of the annuli around their cores. The same remark
applies to each ribbon whose ends are both incident to the same coupon or
both lie on SN (R? x {0, 1}).

In our pictures the preferred side of S will be depicted white, the opposite
side will be shaded. The white side of coupons will be always turned towards
the reader.

Ribbon graphs which have no coupons will be called ribbon tangles. The
isotopy type of a ribbon tangle is uniquely determined by the cores of ribbons
and annuli equipped with the framings.

With each ribbon (k, I)-graph I' we associate two sequences &, (I')=(gy, ..., &)
and e*(IN=(e', ..., &) consisting of + 1. Namely, if B is the ribbon of I having
the segment [i—(1/4), i+(1/4)] x 0 x O (resp. [j—(1/4), j+(1/4)] x 0 x 1) as a base
then the directed core of B looks either “in” this segment or “out” of it. In
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the first case we put g=1 (resp. ¢/= —1). In the second case we put &=
—1(resp. &’ =1). For example, in Fig. 1 ¢, =1, e' =¢,= —1.

Let Q be a coupon of a ribbon graph I'. Denote by a=a(Q) (resp. by b=5b(Q))
the number of ribbons of I' incident to the initial (resp. final) base of Q. A
small neighborhood of Q in R% x (0, 1) is depicted in Fig. 2 where as usual the
white side of Q is turned upwards. Denote the ribbons of I' incident to Q
by B(Q), ..., B*(Q), and B,(Q), ..., B,(Q) as shown in Fig. 2. The directions
of these ribbons are characterized by numbers ¢;(Q), &¢/(Q)= + 1. Namely, &/(Q)
= —1 if the base of B’ lying on Q and depicted in Fig. 2 is its initial base,
otherwise &/(Q)= 1. Similarly, ¢;(Q)= — 1 if the base of B; lying on Q and depicted
in Fig. 2 is its final base, and ¢;(Q)=1 otherwise.
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Fig. 3

2.4. Colourings of ribbon graphs

Fix a ribbon Hopf algebra (4, R, v) and set {V;},.,; of left A-modules of finite
dimension over the ground field k. Denote by N the set of finite sequences
(i1, &) --., (i, &) Where k=0, iy, ..., i€l and ¢, ..., ge{l, —1}. With such a
sequence 7 =((iy, &), ..., (ix, &)) We associate the 4-module

V)=V @VE®...® K

where V!=V and V" !=V" (cf. Sect.2.1). In particular, if k=0, ie. if n=¢
then V(n)=«x.

A colouring (or an A-colouring) of a ribbons graph I' is a mapping A which
associates with each ribbon (or annulus) B of I' its “colour” A(B)el and asso-
ciates with each coupon Q of I' its “colour” A(Q)eHom,, (V(n), V(') where

n=(A(B1(Q)), &1(Q)), ..., (A(B4(Q)), £(Q)),
' =((A(B"(Q), £'(Q)), ..., (A(B*(Q)), & (Q))),

where a=a(Q), b=>b(Q).

Two coloured ribbon graphs I', I'” are called isotopic if there exists a smooth
isotopy h,: R*x [0, 11> R?x [0, 1] of the identity h,=id so that each h, is a
self-diffeomorphism of the strip R*x [0, 1] fixing its boundary R?x {0, 1}
pointwise for all te[0, 1], and h, transforms I" onto I'" preserving the decomposi-
tion into coupons, ribbons and annuli, preserving the directions of cores and
the orientation of the graph surfaces and preserving the colours. Isotopy is,
of course, an equivalence relation. By an abuse of language isotopy classes
of coloured ribbon graphs will be also called coloured ribbon graphs.

Some examples of coloured ribbon graphs and the notation for these graphs
are presented in Fig. 3 (where i, jel). The coloured ribbon (k, [)-graph with 1
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i1.€1 ik'Ek
Fig. 4

coupon of colour f presented in Fig. 4 will be denoted by I'(f, n, 1'); here 5
=((iy, &), .-, (ix, &)EN and ' =((i%, "), ..., (i", £"))e N where i,, i* are the colours
of the corresponding ribbons and ¢,, ¢ are their directions: 1 means down,
—1 means up.

It is convenient to organize from coloured ribbon graphs a category #
Its objects are elements of the set N, i.e. sequences (i, &), ..., (ix, &) as above.
If n,n'eN then a morphism # —#’ is a coloured ribbon graph (considered up
to isotopy) such that the sequence of colours and directions of the bottom
(resp. top) border ribbons is equal to 5 (resp. to #’). The composition "I
of two such morphisms I': n —>#', I": ' —>n" is defined as follows: shift I'" by
the vector (0, 0, 1) into R% x [1, 2]; glue the bottom ends of I'" with the corre-
sponding top ends of I'; reduce twice the vertical size. This gives a well-defined
composition law for morphisms of #. The identity morphisms id,: n —# is the
coloured ribbon graph consisting of vertical untwisted ribbons whose directions
and colours are determined by #.

We also provide # with a tensor product ® : # x # — #, The tensor prod-
uct of objects #, n’ is their juxtaposition #, 5’. The tensor product of two morph-
isms (i.e. graphs) I, I'"" is obtained by placing I to the right of I" so that there
is no mutual linking or intersection.

2.5. Theorem. Let (4, R=Y 0, ® B,, v) be a ribbon Hopf algebra over the field

k of zero characteristic. Let {V;};.; be a set of objects of Rep A. Let # be
the corresponding category of cloured ribbon graphs. There exists a unique covar-
iant functor F: # — Rep A which has the following properties:

(i) F transforms any object n of # into the A-module V (n);

(ii) F preserves the tensor multiplication: for any two coloured ribbon graphs
Lr

(2.5.1) Frer)=r®FI);

(iii) values of F on the ribbon graphs pictured in Fig. 3 are as follows: F(J")
and F(J;) are identity homomorphisms resp. V;—V, and V;¥ > V,Y; F(X;) is
the homomorphism

x@y—=Y. py,(B)y® py () x: Vi®V; = V;® V;;
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Fig. 5§

F(X; ;) is the homomorphism
X®y—=Y. py, (@) y® py,(B) x: Vi@V, = V;® V;

where R™'=Y o, ® B,; F(a;) is the canonical pairing

x@y—x(y): VY ®@Vi—k;
F(b,) is the pairing

y®x=>x(py, (v~ y): ,® VY > k;

F(c;) is the homomorphism k — V,® V¥ which transforms 1 into Y e, ® e™ where
{em} is a basis in V; and {e"} is the dual basis in V" ; F(d,) is the homomorphism
k= VI @ V; which transforms 1 into Y. e" ® py,(vu™") e,

(iv) F transforms each graph I'(f,n,n') (see Fig.4) into the homomorphism
[V - Vn).
Note that the condition (ii) above is formulated somewhat abusively since the
homomorphisms F(I'® I'') and F(I') ® F(I") act in different modules. However,
these modules are canonically isomorphic via rearrangement of brackets. These
canonical isomorphisms are tacitly incorporated in the condition (ii).

Uniqueness of the functor F is essentially obvious, since the graphs
S5, X, X, a, by, ¢, diy, T(f, 1, 1) generate the category . This means
that an arbitrary coloured ribbon graph (considered up to isotopy) may be
obtained from these generators using the tensor product and composition. For
a proof of existence and further details see [Tul, Rel, ReT]. Note that since
F is a covariant functor, F(I'cI"y=F(I')oF(I'") whenever I'-I" is defined. If I
is a coloured ribbon (0, 0)-graph then F(I') is a x-linear homomorphism x — x,
i.e. a multiplication by an element of k. This element is an isotopy invariant
of I It will be also denoted by F(I'). This invariant generalizes the Jones
polynomial of links and related polynomials (see [ReT, Sect. 6.1]).

For example, if I' is the trivial knot with the framing O and the colour
i then I'=b;oc; and one may easily compute F(I') to be dim, V;. The following
lemma generalizes this computation.

2.6. Lemma. Let I' be a coloured ribbon (k, k)-graph which is an endomorphism
of a certain sequence neN. Let L be the coloured ribbon (0, 0)-graph obtained
by closing T (see Fig. 5). Then

F(L)=tr,F(I).
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Proof. Put f=F(I')eEnd, V(n). Consider first the case k=1 so that n=(i, ¢)
with iel, e=+1. Let {e,} be a basis in V; and {e™} be the dual basis in V.
If e=1 then feEnd V;, and

L=b;o(I'®J;7)ec;.
One easily computes

F(L)=} e"(py,(uv™") f (em) =tr, f.

If e=—1 then feEnd V¥,
L=a,‘°(r®-’|‘_)°dia

and a similar computation shows that

FL)=Y f(e"(pys (vu")ey)
=2 vy u™ ") fe") (em) =Y (pvy v~ ") fle™) (em)

=tr, f

(the equality y(vu~')=uv"! follows from (2.1.2) since y is an antiautomorphism
of A).

If k=2 then a similar computation shows that F(L) is the (ordinary) trace
of the composition of f=F(I') and the endomorphism

X1 ®X® ... @ X py, v ™) X, @ py, v N X, ® ... @ py, (uv ™) x;

of V(n). However the latter endomorphism is just the multiplication by uv™!
1

in the A-module V(n). This follows from the equality A(uv™ Y)=uv " '@uv™".
Thus

F(L)=Tr (uv"'f)=tr, f.

3. Modular Hopf algebras. Invariants of closed 3-manifolds
3.1. Modular Hopf algebras

Let (4, R, v) be a ribbon Hopf algebra over the ground field k. Assume that
we have fixed the following data: a finite set I with involution ir>i*: -1
and with a preferred element Oel such that 0*=0; a set of A-modules {V;}
numerated by iel, where V,=x with the action of A determined by the counit
A - k; a set of A-linear isomorphism

{wi: (V)Y > Viliel}  with wy=id,.

The triple (4, R, v) together with this data will be called a modular Hopf algebra
if the following axioms (3.1.1-6) are satisfied.

(3.1.1) The modules {V;|iel} are mutually non-isomorphic, irreducible (i.e. do
not contain proper non-trivial A-submodules), have finite dimension over ¥
and all have non-zero quantum dimension (see Sect. 2.2).
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(3.1.2) For each iel the homomorphism

wio(wi) ™l V> (W)Y Y =V,
is the multiplication by uv ™.

(Note that both (w;)* and w,. are A-linear, but the canonical identification
Vv ¥ =V is not A-linear. This corresponds to the fact that the multiplication
by uv ! is not A-linear, cf. Sect. 2.2).

In what follows the direct product I xIx...xI of k copies of I will be
denoted by I*.

(3.1.3) For any k=2 and for any sequence 0=(iy, ..., i)eI* there exists an A-
linear decomposition

V,.l®Vi2®...®Vik=ZQ@(@(Vi®95)),

iel

where Z, is a certain A-module satisfying the next axiom (3.1.4) and where
{Q§} are vector spaces over k.

(3.1.4) For any k=2, fel* and any A-linear homomorphism f: Zy,— Z, the
quantum trace of f is equal to zero.

The axioms (3.1.1), (3.1.3), (3.1.4) imply that the vector spaces {5} and the
A-modules {Z,} may be uniquely reconstructed from {V}. Indeed, V; cannot
be A-linearly imbedded in Z, as a split summand since otherwise the projection
fiZy—V,cZy would be an A-linear homomorphism with tr, f=dim, V;+0.
Also Hom (V;, V;)=0 for i=+j. Therefore, any split A-linear imbedding

V@KV, ®V,®...0V,

must project monomorphically in V; ® Q} (where 0=(i,, ..., i,)) along other sum-
mands of decomposition (3.1.3). This implies that the dimensions of xk-modules
{95} and the isomorphism types of A-modules {Z,} are completely determined
by {Viliel}.

(3.1.5) Let S; jex be the quantum trace of the A-linear operator

a— (R Rp)a: V,®V,-» V@V,
(If R=)a®p, then this operator transforms x®yeV,®V; into
Y oy, (Bso) x® pv,(xs B,) y)- Then the square matrix (S; j); jo; must be invertible

over K.
To formulate the last axiom we need some more notation. Since ve A lies
in the centre of 4 the homomorphism

Xt py,(0) x: Vi

is A-linear. Since V] is irreducible this homomorphism is actually a multiplication
by certain element v; of the ground field . (Indeed, if f: V;— V; is an A-linear
homomorphism then for any 1€k the set {xeV;| f(x)=Ax} is a submodule of
V;. At least one of these submodules is non-zero and therefore coincides with
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V. Here we assume that either « is algebraically closed, say k =C, or the modules
{k ®, V;}; are irreducible over the algebraic closure & of k).

Invertibility of v in A implies that v;=+0. Since the matrix (S; ;) introduced
above is invertible, there exists a unique solution (d;);., of the following system
of linear equations:

(*) ZUiSi,jdi:'vj—l dlmq Vl

iel

(jel). Put
C=> v/ ' dim,(V)d;ex.
iel

The last axiom says:
(3.1.6) C+0.

An example of a modular Hopf algebra will be given in §8.

3.2. Presentation of closed 3-manifolds via framed links

A framed link in the 3-sphere S is a finite collection L of disjoint smoothly
imbedded circles L,, ..., L,, in S3, each circle L; being provided with an integer
n; (the framing). The framed link L gives rise to a 4-manifold D; obtained
by adding 2-handle to the 4-ball B along L<=S?=0B. Here are some details
of the construction. Let D? be the 2-disc with the center x. Then D, is obtained
from B and m copies of D? x D? by gluing for all i=1, ..., m the piece dD* x D?
=S!x D? of the i-th copy of D? x D? to a tubular neighborhood U; of L; such
that S! x x is identified with L; and for any yedD the loop S! x y is identified
with the n;-times twisted parallel of L; whose linking coefficient with L, equals
n;. Clearly D, is a compact 4-manifold with boundary which is formed by the

(induced) gluing of $3\ (J Int U; with m copies of D* x S'. The orientation of
i=1 .

the 4-ball B, inducing the righthanded orientation in S*=R*uU {0}, extends

to an orientation in D; and induces thereby an orientation in D, . Thus M, =0D

is a closed oriented 3-manifold. One says that M, is obtained by the surgery

on S* along L. Note that in this construction L is a framed but unoriented

link.

It is well known that each closed connected oriented 3-manifold can be
obtained by surgery on S* along certain framed link. Basically this follows
from the classical theorem of V.A. Rokhlin which ensures that each closed ori-
ented 3-manifold bounds a compact oriented 4-manifold (see also [L], [W]).

The bilinear intersection form

H,(D;R)xH,(D; R)—>R
may be diagonalized with respect to some basis in H,(D,; R)=R™ where L

is an m-component framed link in S3. Denote by o _(L) the number of non-
positive squares on the diagonal.
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3.3. Invariants of closed 3-manifolds

Fix a modular Hopf algebra as defined in Sect. 3.1. We will use the notation
introduced in Sect. 3.1. In particular I is the (finite) set numerating the colours
{V;} and Cek\0.

Let M be a closed connected oriented 3-manifold. Let L be a framed link
in S* with components L, ..., L,, and framing n,,..., n,, such that M is degree
1 diffeomorphic to M, the result of surgery of S* along L. Denote by col (L)
the set of all mappings {1, ..., m} — I. Fix an orientation w of L. If Aecol (L)
then the triple (L, w, 4) in the obvious way determines a coloured ribbon (0, 0)-
graph I'(L, w, ) consisting of m annuli. Namely, let T; be the annulus in S*
with the w-oriented core L; and such that the linking number of two circles
making 0T; is equal to n;. Provide the annulus T; with an arbitrary orientation
and compress () T; into R? x (0, 1)< S>. This gives a ribbon (0, 0)-graph, and

the mapping 4 determines its colouring. Note that the isotopy type of the result-
ing coloured ribbon graph I'(L, w, ) depends only on L, w and A, and does
not depend on the choice of orientations of the annuli {7;}. Indeed. rotating
an annulus around its core to the angle 180° we get the same annulus with
the opposite orientation. Thus, up to isotopy both orientations of the annulus
are the same. According to the results of Sect.2.5 we may associate with
I'(L, w, ) its isotopy invariant F(I'(L, w, A))ek. Put

{L} =[] drwy FT'(L, w, M)k
i=1

where {d,},; are the solution of equations (x), Sect. 3.1. Put

{L}= 2 {L}

Aecol(L)

Clearly the scalar {L} does not depend on the order Ly, ..., L, in the set of
components of L.
3.3.1. Lemma. {L} does not depend on the choice of orientation w in L.

This Lemma will be proved in § 5. Put
FM;L)=C"°-P{L}ek.
3.3.2. Theorem. F(M; L) is a topological invariant of M.

This Theorem will be proved in § 7 where we use the Kirby moves on links
(discussed in § 6) to show that F(M; L) does not depend on the choice of L.

We shall denote the invariant F(M; L) by F(M). This invariant is multiplica-
tive:

F(M,#M,)=F(M,)F(M,).
Note that F(S3)=1 and
F(S'xS8%)=C~'Y d;dim, V.
iel
(The latter formula follows from the fact that S! x S? is the result of surgery
on S along the unknotted circle with the zero framing).
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Fig. 6

The definition of the invariant F may be easily extended to the case of
closed oriented 3-manifolds with some coloured ribbon graphs sitting inside.
By a ribbon graph in an oriented 3-manifold M we mean an oriented surface
S imbedded in M and decomposed as the union of a finite collection of directed
ribbons and annuli so that conditions (a)+d) of Sect. 2.3 hold true and each
base of a (type 2) ribbon is contained in a base of a certain coupon (i.e. type
1 ribbon). This definition generalizes the definition of ribbon (0, 0)-graph in
R2 x [0, 1]. In particular, each framed oriented link in M gives rise to a ribbon
graph in M consisting of annuli.

Colourings of ribbon graphs in M and the isotopy relation between coloured
ribbon graphs are defined along the lines of Sect. 2.4 with the obvious changes.
We cannot organize a category of coloured ribbon graphs in M since we do
not consider graphs with border edges. (Such an extension of the theory is
possible but we do not pursue this line here.)

Let M be a closed oriented connected 3-manifold and T be a coloured
ribbon graph in M. As above, present M as the result of surgery on S* along
a framed link L with components L, ..., L,,. Applying isotopy to T in M we
may push T into S3\U <M where U is a tubular neighborhood of L in S°.
Thus, assume that T S*\ L. If  is an orientation of L and lecol (L) we may
form the ribbon graph I'=I"(L, w, A) so that I' = U. We obtain finally a coloured
ribbon (0, 0)-graph TuT in S* so that its isotopy invariant F(TuTI')ex may
be considered. Put

FM, T,Lo)=C™°-® Y []dyw,F(TUI'(L, w,7)
Aecol(L) i=1
3.3.3. Theorem. F(M, T, L, w) is a topological invariant of the pair F(M, T).

Put F(M, T)=F(M, T, L, w). In particular, (M, T) is an invariant of ambient
isotopy of T in M. Clearly, F(M, ¢)=F(M). The invariant F(M, T) has the
same multiplicativity property as F(M):

F(M,#M,, TII_ITZ):F(MU T)FM;, Tp)

where T,cM,, T,cM,. If M=S3 then F(M, T)=F(T). Using ribbon graphs

consisting of annuli one may specialize Theorem 3.3.3 to obtain an isotopy

invariant of framed oriented links in an arbitrary closed oriented 3-manifold.
Theorem 3.3.3 is proven in § 7.

4. Operator invariants of 3-dimensional cobordisms
4.1. Parametrized surfaces

Denote by ¥, the planar rectangle (the coupon) with k ribbons glued to the
top base, as depicted in Fig. 6. Denote by G* the boundary of the regular neigh-
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borhood U(F) of , in S3. Provide G* with the orientation induced by the
right-handed orientation in U(F). Clearly, G* is an oriented closed connected
surface of genus k. If G is another such surface then by a parametrization of
G we shall mean an isotopy class of degree 1 homeomorphisms G*—G. An
oriented closed surface G is said to be parametrized if the set of its components
710(G) is totally ordered and each component is provided with a parametrization.
By the genus g(G) of a parametrized surface G we mean the sequence of genera
of components of G written down in accordance with the order in 74 (G).

4.2. Category of 3-dimensional cobordisms

By a 3-dimensional cobordism we mean a triple (M, G,, G,) where: M is an
oriented compact 3-manifold; G,, G, are parametrized oriented closed subsur-
faces of 0M with

GinGy=¢, G UG,=0M, J[M]=[G,]-[G,]

(possibly G, or G, is empty, or even both are empty); the set of components
of M is equipped with a total order compatible with the orders in ny(G,),
7o(G,) (this means that the inclusion in: ny(G,) —» ny(M) has the property: if
in (@)< in (b) then a<b;r=1,2).

Two 3-dimensional cobordisms (M, G,, G,) and (M’, G}, G}) are called
homeomorphic if there exists a degree 1 homeomorphism

h: (M, G4, G,)—=(M’, G}, G)

such that for each r=1, 2 the composition of k| _: G, = G, and the parametriza-
tion of G, gives the parametrization of G,.

We define the category u of 3-dimensional cobordisms. Its objects are finite
sequences of non-negative integers. If g,, g, are two such sequences then by
an py-morphism g, — g, we mean a 3-dimensional cobordism (M, G, G,) consid-
ered up to homeomorphism and such that g(G,)=g,, g(G,)=g,. The composi-
tion of two such morphisms (M, G,, G,), (M', G}, G,) with g(G,)=g(G}) is
defined by gluing M and M’ along G,~ G via the parametrizations of G,
and G). The identities are presented by cylinders with the same parametrization
of both bases. We provide the category p with the tensor product defined by
juxtaposition of sequences and disjoint union of cobordisms.

For each parametrized closed oriented surface G its genus g(G) is an object
of u. By the abuse of language we will call the surface G itself an object of
u. Clearly, two such surfaces determine the same object of u if and only if
they are homeomorphic via a homeomorphism preserving both the order of
components and parametrizations.

Remark. For any object g=(g’, ..., g") of u one may consider the group Aut, (g)
of those u-morphisms g — g which have two-sided inverses. It follows from stan-
dard facts of 3-dimensional topology that such morphisms are represented by
cylinders over the surface of genus g with, possibly, different parametrizations
of bases. This implies that

Aut, (g)= X Aut, (g)
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and that the group Aut . (g") is canonically isomorphic to the Teichmiiller modu-
lar group of genus g (cf Sect. 4.6). This explains the role of the modular group
in the present frameworks.

4.3. Functor F

Fix a modular Hopf algebra (4, R, v, I, {V}}, ...) over the field «. In this section
we construct a projective covariant functor u— Vect (k) where Vect (k) is the
category of finite dimensional x-modules and k-linear homomorphisms. The
word “projective” means that the functor in question transforms composition
of morphisms in y into the composition of corresponding linear operators mul-
tiplied by a scalar. This functor generalizes the invariant of closed 3-manifolds

introduced in Sect. 3.3.
For a sequence 0=(i, ..., i)el* (cf. § 3) put 00* =(, i}, iy, i%, ..., iy, if). Thus
Q0p=Q°

iy, 0,00, %, ey dies i,

where 0 is the preferred element of I (cf. Sect. 3.1).
For k=1 put
= D -

felk

Thus ¥, is a finite dimensional vector space over k. Put also ¥ =x.
We assign to a parametrized surface G with components G, ..., G, the vector
space

FGO)=%Q%,®..0%

where g;=g(G,), i=1, ..., n. In particular, F associates with a connected parame-
trized surface G the vector space ¥ ). If G=¢ then F(G)=x.

To define operators corresponding to 3-dimensional cobordisms we need
some preliminary constructions. Recall the planar surface ¥ introduced in
Sect. 4.1. Provide F, with an orientation so that the preferred side of F, is the
one turned to the reader. Provide the coupon and ribbons of V, with the direc-
tions shown in Fig. 6. Thus ¥V, gains the structure of a ribbon (0, 0)-graph.
According to our definitions a colouring of V, is a sequence 0=(iy, ..., i)el*
of colours of the ribbons of ¥, and an A-linear homomorphism (the colour
of the coupon)

(43.1) k=T @K ®..0V,0.
Since V¥, =« each element
4.3.2) f€Q%.

gives rise (via the isomorphisms (3.1.3) and {w;}) to an A-linear homomorphism
(4.3.1). Thus f together with the sequence 6 determines a colouring of %. It
will be denoted by f.

Denote by F;’ the mirror image of the surface ¥, with respect to the horizontal
plane (see Fig. 7, here [=0). Provide ¥}’ with the orientation so that the preferred
side of ¥/ is the one turned to the reader. Provide the coupon and ribbons
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Fig. 7

of /' with the directions shown in Fig. 7. Thus ¥ becomes a ribbon (0, 0)-graph.
A colouring of ¥}’ is a sequence 4 =(j,, ..., j)€l' of colours of the ribbons, and
the colour of the coupon, i.e. an 4-linear homomorphism

(4.3.3) V,®Vy ®...0V,0V, —«k.
Since V, =k each element

4.3.4) he(Q9,.)™

gives rise to a A-linear homomorphism (4.3.3) annihilating

Zrm* ® (‘B (I”:® Qfm*)'

iel\{0}

Thus h together with # determines a colouring of F/. Denote this colouring
by h.

Let (M, G,, G,) be a 3-dimensional cobordism with connected M. Assume
first that G,, G, are connected surfaces of genus respectively k and I Since
G,, G, are parametrized we have the degree 1 parametrization homeomorph-
isms, say, ¢: G*—> G, and ¥: G'> G,. Glue the regular neighborhood U (V;) of
%,=R3 to M along ¢: dU(V,)=G*— G,. Glue the regular neighborhood U (V}')
of '=R?® to M along the homeomorphism dU (V) » G, which is the composi-
tion of the reflection in a horizontal plane dU (F})—oU(F)=G"' and . The
result of these gluings is a closed 3-manifold, say, M consisting of 3 pieces:
M, UW) and U(¥). In particular, the ribbon graphs V,, ¥}’ are imbedded in
M. Provide M with the orientation which extends the given orientation in M
and the right-handed orientations in U (W), U (V).

Each pair of sequences 0=(iy, ..., i,)eI*, n=(j,, ..., j)€I' and each pair f, h
as in 4.3.2, 4.3.4 determines a colouring f] [ h of the ribbon graph K] [V imbed-
ded in M. According to the results of Sect. 3.3 we may consider an element

F(M, (R LI%, FLIR)

of k. Denote this element by {f|M|h). Theorem 3.3.3 implies that {f|M|h)
is a topological invariant of the cobordism (M, G,, G,) and the pair f, h. It
will be convenient to normalize this invariant. Put

l
4.3.5) SIMIBY =11 d;{fIM|h)ek.
r=1
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The formula (f, h) — (f| M |h)’ defines a bilinear pairing
Qe X (0¥ = k.

The associated homomorphism Q9. — Q2,. is the “block” of the desired opera-
tor. Denote this block by F(M; 6, n). Combined together, these blocks corre-
sponding to arbitrary OeI*, nel define the operator

F(M’ Gb GZ): lI{‘_> qjl

In the case of non-connected G,, G, the definition goes along the same
lines. One has to glue in as many handlebodies U (V,), U (V,) as there are compo-
nents in G,, G,. In the multiple Hd the index j should vary over the colours
of all ribbons of all V.

It follows dlrectly from deﬁmtlons that the operator F(M, G,, G,) is invariant
under homeomorphisms of cobordisms. This operator invariant generalizes the
invariant of closed manifolds introduced in Sect. 3.3. Indeed, if 0M =4¢, i.e. if
G,=G,=¢, then F(M, G,, G,) is just the homomorphism a—F (M) a: k — k.

If M is non-connected we define F(M, G,, G,) to be the tensor product
of operators corresponding to the components of M.

The definition of F(M, G,, G;) given above appeals to the constructions
of Sect. 3.3. We would like to describe a more direct procedure for computing
this operator.

Assume first that G,, G, are connected surfaces of genus resp. k and I. Present
the manifold M constructed above as the result of surgery on S* along a framed
link L with components L,, ..., L,. Provide L with an arbitrary orientation.
Pushing the handlebodies U (), U(¥)= M into S*\U(L)c M we may assume
that ¥, and ¥ lie in S3\U(L). These imbeddings of ¥, and F; in S3\L are
possibly knotted. However, applying an isotopy, if necessary, we may assume
that the coupons of ¥, and V]’ lie respectively below and above the other parts
of the picture (see Fig. 8). In the shaded region of Fig. 8 lie without intersections
the components of L and the ribbons of V,, V}'. (These ribbons may be twisted,
knotted, and linked with each other and with L. It is understood that the pre-
ferred side of the coupons is turned towards the reader.) Cutting out both cou-
pons we get a ribbon (2k, 2])-tangle I'. Let 0=(iy, ..., i), n=(j1, ---, ji), as above.
Provide the bottom k ribbons of I' with the colours iy, ..., i, and the top !
ribbons of I" with the colours j,, ..., j;. This colouring together with an arbitrary
colouring A of L yield a colouring of I' denoted by %" or briefly by 1. According
to the results of §2 we have an A-linear operator

FLA:V,®V,Y®...0V, 0V -V, ®Vy®...0V,®V,.
Let vy and {, be respectively the inclusion and the projection

ng*—)V ® ® ® lk® lk )
Vi®Vy ®...®V, 0V, »2,
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provided by the axiom (3.1.3) and the isomorphisms {w;}. Then the operator

1 m
4.3.6) cow d, ¥ (I1dreoeF(T z)ov,,))

r=1 Aecol(4) \s=1

is precisely the block
F(M; 0, 1): Qe — 2

nn*

of the operator F(M, G, G,). In the case of non-connected G, (resp. G,) there
is a similar formula for F(M, G,, G,) the only difference is that here we have
several bottom (resp. top) coupons which should be drawn in a row (in accor-
dance with the prescribed order in the set of components of G,, resp. G,) and
then should be cut out to get a ribbon tangle.

It is easy to reconstruct the cobordism (M, G,, G,) with connected G,, G,
from the ribbon tangle I' constructed in the preceding paragraph. This gives
a convenient way to present 3-dimensional cobordisms with connected bases.
More exactly, let us call a (2k, 2])-ribbon tangle I' small if for any ribbon Q
of I' the ends of Q lie either both on the line Rx0x0 or both on Rx0x1
and the directions of the ribbons of I' are the same as in Fig. 8. Each small
(2k, 2])-tangle I' gives rise to a 3-dimensional cobordism (M, G,, G,) with genus
G, =k, genus G,=I. For this we just invert the construction described above:
glue in 2 coupons (one on the top of I, one on the bottom of I') to get some
imbeddings a: ¥, < S3, B: V' < S* identical on the coupons of V;, V'; surger S*
along the framed link determined by the annulus components of I'; cut out
neighborhoods of a (%), f(I}') from the closed 3-manifold obtained by the surgery.
The imbedding « and the composition of § with the reflection ¥,— ] induce
parametrizations of G, and G,.

44. Lemma. Let I, I’ be resp. small ribbon (2k, 2])-tangle and small ribbon
(21, 2¢t)-tangle, determining some morphisms G, — G,, G,— G5 of the category
u. Then I''oT" is a small ribbon (2k, 2t)-tangle which determines the composition
G, — G, of these two morphisms.
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Fig. 9

This Lemma will be proved in Sect. 4.7. It has a natural extension to the
case of non-connected G, G,, G;. We leave the precise formulation of this
extension to the reader.

To give an example we consider the small ribbon tangle depicted in Fig. 9.
It is easy to see that this tangle presents idgx, i.€. the cylinder GX x [0, 1] with
the identity parametrizations of both boundaries. (Remark that the cobordism
associated with a small ribbon tangle does not depend on the directions of
the annulus components of the tangle.) Unfortunately, we do not know in general
if the operator F(idg) acting in ¥, is the identity. Thus we cannot claim that
F is a functor in the usual sense. On the other hand F has the following important
property.

4.5. Theorem. If a 3-dimensional cobordism (M, G, G3) is a composition of two
cobordisms (M, G,, G,) and (M,, G,, G3) then for some integer n

F(M, Gl’ Gs)—_—C"F(Mz, G2, G3)OF(M1, Gl’ Gz)-

This Theorem will be proven in Sect. 4.8.
Theorem 4.5 implies in particular that for any parametrized surface G we
have .

(F(idg))* = C™ F (idg) = C" F (id)

with meZ. In other words up to a scalar multiple F(idg) is a projector acting
in the vector space F(G). Denote the image of this projector by F(G). For
any p-morphism M: G — G’ we have

F(M)=C™F(idg)> F(M)=C" F (M) F(idg)

with m, neZ. Therefore F (M) maps F(G) into F(G’). Associating with each para-
metrized surface G the vector space F(G) and with each py-morphism M: G- G’
the homomorphism F(M)|zs We get a projective covariant functor F: M
— Vect (x). Note that F(G)+0 for any G. This follows from Theorem 4.4 and
the fact that G is embeddable in S* and F(S3)=1. Note also that F(G,][G>)
=F(G,)® F(G,) and that for G=¢ F(G)=«.
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Fig. 10

4.6. A representation of Mod,

Recall that the Teichmiiller modular group Mod, is the group of isotopy classes
of orientation preserving homeomorphisms G*— G*. The projective functor F
constructed in Sect. 4.5 gives rise to a projective linear repesentation of Mod,
acting in ¥ = F(G* c ¥,. Indeed, each degree 1 homeomorphism «: G*— G* en-
ables us to parametrize both components of the boundary of the cylinder G*
x [0, 1]: we parametrize G* x 0 via o and we parametrize G* x 1 via the identity.
This yields a morphism, say, M, of the category u. Put

e(x)=F(M_)eEnd ¥,.

If «, BeMod, then the cobordism M,., splits into a composition of M, and

a cobordism homeomorphic to M,. Theorem 4.5 implies that e(ao f)=c"e(x) e(p)

with neZ. By the very definition of the space ¥, the operator e(1) is the multipli-

cation by a non-zero scalar. Thus e is a projective linear representation of Mod,.
There is a canonical extension

0—>Z—+1</I;E,‘—>Modk—>l

(segiA/]) and one may show that e lifts to an honest linear representation
of Mod,. If C is a root of unity, C"=1, then e lifts to a linear representation
of Mod,/rZ. Actually, one may explicitly compute the 2-cocycle corresponding
toe.

The constructions of Sect. 4.3 enable one to present the cylinder M, associat-
ed with xeMod, by a ribbon (2k, 2k)-tangle and to compute e(x) via the opera-
tors associated with colourings of this tangle. We give some examples of ribbon
(2, 2)-tangles associated with the autohomeomorphisms of the torus G!. We
fix the basis a, b in H,(G')=Z @® Z depicted in Fig. 10. (Recall that G' =oU (V,)).
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=

Fig. 11

Now the group Mod, may be canonically identified with si(2; Z). In Fig. 10,
we present two (2, 2)-tangles which may be easily shown to give rise to elements
of Mod,; corresponding to the generators

01 1 -1
-1 o] e [o ]
of sl(2; Z). (The integers 0, 1 in Fig. 10 are framings, cf. Sect. 2.3). Note that
the composition of (2k, 2 k)-tangles corresponds to the composition of associated
elements of Mod,. This enables one to construct a (2, 2)-tangle corresponding

to an arbitrary element of Mod,. Note that different tangles may present the
same homeomorphism. For example, an application of Kirby (+ 1)-move (see

§6) shows that the tangle depicted in Fig. 11 also presents [(1) B 1] Note finally

that the majority of small (2k, 2k)-tangles do not correspond to any homeo-
morphism of G*.

4.7. Proof of Lemma 4.4

Consider the I framed circles L,, ..., L,=S* which are obtained by gluing the
(cores of) top boundary ribbons of I' with bottom boundary ribbons of I".
Each of these circles transversally hits the plane R? x(1/2)cR? (along which
I' is glued to I'') in exactly two points. It is convenient to complete this plane
to a 2-sphere §? =(R? x (1/2)) U {00} = §3. Take a narrow cylinder 2 x [0, ¢] = S>
over this 2-sphere. We may arrange L,, ..., L, so that each of these components
meet the cylinder in two vertical segments {pt} x [0, e]. When we form the
3-dimensional cobordism corresponding to I I" we surger S> along all annulus
components of I'"I". In particular, we cut out regular neighborhoods U, ..., U
of L,, ..., L;and glue in [ solid tori, say W,, ..., W,. Put

N=((32x[0,sJ) O u) U U w.

gluing i=1

The manifold N may be easily identified to be the cylinder G, x [0, 1] which
is imbedded in the 3-cobordism corresponding to I"-I. When we cut N out
of this cobordism there remain two connected pieces which may be easily identi-
fied with the cobordisms corresponding to our morphisms G, - G, and G, - G;.
The cylinder structure of N corresponds to gluing the two latter cobordisms
along G,. This proves the lemma.



Invariants of 3-manifolds 569

4.8. Proof of Theorem 4.5

Assume for simplicity that G,, G,, G; are connected surfaces of genus resp.
k, I, t. Present the cobordisms M,, M, by small ribbon tangles resp. I} and
I;. According to Lemma 4.4 the cobordism M is presented by I'=1I,-I;. Fix
some sequences 0=(iy, ..., i)el®, n=_j, ..., j)el".

We must prove that

(4.8.1) F(M;0,n)=C" Y F(M,;p,n)°F(M,;0,p)

pell

where n does not depend on the choice of 6,n. To show this we shall use
(4.3.5). Let L,, L,, L be the framed links formed by the cores of annuli of the
tangles resp. I3, I;, I. Clearly L consists of L;, L, and [ circles which may
be linked with L, and L,. We fix some colourings 4,, 4, or L,, L, and a sequence
pel' which determines the colours of these I circles. Let A be the resulting
colouring of L. We claim that

(4.8.2) Lo (L, 2% M ovg=(Cyo F (I3, 250, (o F(I7, A7P)ov).
This follows from (3.1.3) and 3 facts: (i) since F is a covariant functor,
F(I[, 2%")=F(I;, 23 ") F (I}, A7"°);
(ii) each composition of 4-linear homomorphisms
k=Vo—->V,>k
equals 0 unless i=0; (iii) each composition of A-linear homomorphisms

K—>Z, K
equals 0.

t
Multiplying both parts of (4.8.2) by H d; x Hd sy Where I runs over all
r=1 s
components of L we will get (4.8.1) with n=0_(L,)+0_(L,)—o_(L). (It is here
that the multiple [ d; which was artificially introduced in (4.3.5) plays its role).

This finishes the proof.

4.9. Remarks. 1. The operator invariants of cobordisms introduced in Sect. 4.3
formally depend on the choice of decomposition (3.1.3). Actually it is easy to
see that they do not depend on this choice.

2. One may easily extend the definition of the functor F to the case of
3-cobordisms equipped with coloured ribbon graphs sitting inside. Moreover,
one may generalize our constructions to graphs with boundary edges whose
ends lie on the boundary of the cobordism. To this aim one needs to define
the vector space F(G) where G is a connected closed oriented surface provided
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Fig. 12

with a finite set of points x,, ..., x, each x, being also provided with a colour
Jjrel. We put
F(G)= @ Q?,,...,j,,,i,,i;,...,im,i;,’

i1y .., imel

where m= genus (G). The details are left to the reader.

3. With an arbitrary non-parametrized closed oriented surface G we may
associate a projective space. Namely, consider all parametrizations « of G and
identify the corresponding vector spaces F(G, «) via the action e of the modular
group:

e(ato): F(G, ')~ F(G, a).

Since e is a projective action this gives a projective space.

5. Proof of Lemma 3.3.1

5.1. Lemma. Let I be a coloured ribbon graph in S®. Let p be an annulus of
I' coloured by icl. Let I be the coloured ribbon graph obtained from I' by
reversing the direction of p and replacing the colour i of p by i*. Then F(I")=F(I).

Proof. The claim of the Lemma has the following local version:

(5.1.1) FUD)=wiz ' F(J;*) wa,

(5.1.2) FH)=w,F(J)w L,

(5.1.3) F(dw)=(wax'®w)F(c),

(5.1.4) F(bw)=F(a)(w ' @wy),

(5.1.5) F(YE D=1 ®wi HYF(X[H(wa® 1),
(5.1.6) F(T} ) =i ' @ D F(X75)(1 ®@wy)

where e=+1 and X, Y, T are the (2, 2)-tangles shown in Fig. 3 and 12. Since
an arbitrary coloured ribbon graph may be obtained from J*, a, b, c,d, X*
and the graphs I'(f, 11, ') via composition and tensor product, the “local” equali-
ties above imply the claim of the Lemma. (It is, of course, important that p
misses the coupons of I, so that the coupons of I" and I are the same).
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The equalities (5.1.1, 5.1.2) are obvious since F(J;*) and F(J;") are identity
endomorphisms. Let us prove (5.1.4). If xe V.., yeV, then

F@a)w: ' @ wu) (x ® y)=wu(n)(w; ' (x) =y((whow; )(x))
=yv™ ' x)=F(bs) (x® y).
The proof of (5.1.3) is also a direct combination of definitions and the axiom
(3.1.2). Let us prove (5.1.6) with e=1. A direct calculation shows that the R.H.S.
of (5.1.6) applied to a®@ be V;® V,.* yields

(5.1.7) L Pvi(@) B)® py, (B @)V @V

where R™'=) a;® ;. In particular, the R.H.S. of (5.1.6) actually does not

depend on the choice of {w;}. Fix a basis {e,} in V. and the dual basis {™}
in V.. Clearly

Tj,+i*:(-]i*_ ® Jj+ ® bi*)o(']i: ® Xit,j®‘]i*_)°(di* ® Jj+ ®Ji*—)'
Then an easy computation shows that

F(TW)(a®b)=} " ® py,(B) alpy. o, u™") ey, b)

m,r

where R=Y o, ® B, and <e, b)=b(e). (Here we have used that v lies in the
centre of A).r Now we have (cf. Sect. 2.2)
2" py (o, u™") ey, by =(py,.(y* (@))* b=pys (y() ().
Thus "
(5.1.8) F(T;i)(a®b)=} pys: (r() b® py,(B,) a.

In view of (2.1.1) we have

Y1) ®B,=Y . ® Bi.

Therefore (5.1.7) and (5.1.8) imply (5.1.6) with e=1. The case e=—1 and the
formula (5.1.5) are considered along the same lines.

5.2. Proof of Lemma 3.3.1

Lemma 2.6 implies that the invariant F of the trivial knot with framing 0 and
with coulour i€l is equal to dim, ;. Now Lemma 5.1 shows that

(5.2.1) dim, (V) = dim, (V). (5.2.1)
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Fig. 13

Let us show that v,=v,. Since V. is isomorphic to V;¥ over 4 we see that
the endomorphism x— py.~ (v) x of ¥}V is actually the multiplication by v;,. One
the other hand, for xeV,"

Py (0) x=(py,(y ®)))* (x)
(see Sect. 2.2). Since y(;))= v and py,(v) is the multiplication by v; we have
(5.2.2) U,‘* = Ui .

Lemma 2.6 implies that the scalar S; ; introduced in Sect. 3.1 is equal to
F(H; ;) where H; ; is the Hopf link depicted in Fig. 13. Inversing directions
of both components and trading i, j for i*, j* we get Hy ;. Lemma 5.1 implies
that

(5.2.3) Sii=Su .

The equalities (5.2.1-3) and the equation (*) of Sect. 3.1 imply that d,.=d; for
all iel. This fact together with Lemma 5.1 imply the claim of the Lemma.

6. The Kirby calculus
6.1. Kirby’s moves

It is easy to see that one and the same closed oriented 3-manifold may be
obtained from S* by surgeries along different links. R. Kirby [K] introduced
certain transformations (moves) on framed links and proved that two framed
links L, L determine the same (up to degree 1 homeomorphism) closed 3-mani-
fold if and only if L may be obtained from L by such transformations. The
hard part “only if” of this theorem is based on J. Cerf’s theory of critical
points of families of Morse functions.

R. Fenn and C. Rourke [FR] introduced another set of transformations
on framed links which generate the same equivalence relation as the Kirby
transformations but have the advantage of being local, i.e. they proceed entirely
inside a small ball which intersects the link in a standard fashion. We will
follow here the approach of Fenn-Rourke (see also D. Rolfsen [R]).
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€ u p - one full twist

Fig. 14
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Let e=+1. Two framed links L, L are related by a Kirby e¢-move if they
are identical except for the pieces shown in Fig. 14. Here p is an unknotted
component of L with framing e. This component disappears in L. The box
denotes the full left hand twist if e=1 and the full right hand twist if e=—1
applied to the bunch of vertical strings. If a component L; of L distinct from
p has a framing n then the corresponding component of L' has the framing
n—e(lk(L;, p))* where lk denotes the linking coefficient. Some examples of the
local pictures in question are given in Fig. 15. Note that by the Kirby move
we mean both the passage from L to L and the passage from L to L. In particular,
elimination or insertion of an unknotted component with the framing ¢= +1
which lies in a ball in the complement of other components is a Kirby e-move,
called special Kirby e-move.

To understand the action of Kirby moves on the framings it is convenient
to use the language of ribbons. Recall that (considered up to isotopy) framed
links bijectively correspond to ribbon graphs consisting of annuli. In this lan-
guage the strings of L piercing the disc bounded by p in Fig. 14 are narrow
ribbons. Applying to these ribbons the full twist as above we get a new system
of annuli which corresponds to the link I with the framing described above
(cf. Fig. 16).

6.2. Theorem ([K], [FR]). The closed oriented 3-manifolds obtained from S* by
surgeries along framed links L,, L, are degree 1 homeomorphic if and only if
L, may be obtained from L, by Kirby (+ )-moves.
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We will need a slightly improved version of this Theorem.

6.3. Theorem. The closed oriented 3-manifolds obtained from S* surgeries along
framed links L, L, are degree 1 homeomorphic of and only if L, may be obtained
from L, by Kirby (+ 1)-moves and special Kirby (— 1)-moves.

Proof. It suffices to present Kirby (— 1)-moves as compositions of (+ 1)-moves
and special (— 1)-moves. Recall first the f-move on framed links, which replaces
a component by its band sum with the parallel of another component (see
[K]). More exactly, let a, u be two components of a framed link L with the
framings resp. m, n. Let o' be the parallel of o twisted m times around a. Let
b: [0, 1]1x [0, 11— S be a ribbon in S* disjoint from L except that one base
of b lies on u and the other base of b lies on o'. Replace u by the band sum

u, o =puad Ub({0, 1} x [0, IP\b([O0, 1] x {0, 1})

provided with the framing m+n+ 21k(a, u). Here to compute /k we take orienta-
tions of a, u compatible with a certain orientation of the ribbon b. This move
on L is called f-move. (Its effect on the 4-manifold D, is to isotope the attaching
map of the 2-handle corresponding to p over the 2-handle corresponding to
a. This transformation does not change the homeomorphism types of this 4-
manifold and of its boundary. The f-move together with special (+)-moves
were originally used by Kirby to generate the equivalence relation on framed
links corresponding to homeomorphisms of 3-manifolds).

The arguments of [FR, page 5] show that if « is an unknotted component
with non-positive framing then each f-move as above may be presented as
the composition of several Kirby (+ 1)-moves. It is easy to decompose any
Kirby (—1)-move in the composition of such type f-moves and one special
(—1)-move, see for instance Fig. 17. This implies our claim.
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Fig. 19

7. Proof of Theorems 3.3.2 and 3.3.3

7.1. Lemma. Let I(i, j) and I,(j) be the coloured ribbon (1, 1)-tangles pictured
in Fig. 18. Then

(7.1.1) Y diF(I1 (i, j)=F (I;(j))eEnd, V;.

iel

Proof. Since V;is an irreducible A-module both F(I (i, j)), and F (I,(j)) are multip-
lications by some scalars resp. g; ;, hjex. According to computations of [RT,
Sect. 5.4], h;=v; !, and also the operator V;— V; corresponding to the ribbon
(1, 1)-tangle pictured in Fig. 19 is the multiplication by v;. Recall the ribbon
link H; ;introduced in Fig. 13. Lemma 2.6 implies that

gi,j dimq I/J= Ui F(H,‘,j)=viS,~’j.
Therefore
Z di gi,j= z di vi S,,J(dlmq V’)— t = Uj_ 1.
iel iel

This implies (7.1.1).
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7.2. Proof of Theorem 3.3.2

In view of Theorem 6.3 it suffices to verify that the Kirby moves on L do
not change F(M; L). Assume first that two framed links L and L in S3 are
related by a special Kirby e¢-move. Let p be the unknotted circle of L with
the framing e.

Let p; be the same circle equipped with the colour iel. Fix an orientation
o of L and the induced orientation o’ of L. In view of (2.5.1) for any Aecol (L)
we have

F(I'(L, ', ) = F(I'(L, @, A|.)) F (p;)

where i=A(p). Note also that o_(L)=0_(L) if e=1 and o_(L)=0_(L)+1 if
¢= —1. Thus we have

F(M;L)y=F(M;L)C¢™ V2% d,F(p).

iel
Lemma 2.6 and the interpretation of v; mentioned in Sect. 7.1 show that

F(p)=v; dim, V.
Ife=—1 then
Y. diF(p)=Y d;v; ! dim, V;=C,

iel iel

and therefore F(M; L)=F(M; L). To establish the same equality in the case
of e=1 we have to show that
Y d;v;dim, V;=1.

iel

The latter formula follows from (*), (Sect. 3.1) with j=0. Indeed, V, =k and,
as it is easy to see, f; o=dim, V;, vo=1, dim, V;,=1.

Let L, L be two framed links in S* related by the Kirby (+ 1)-move such
that the small disc in S® bounded by the unknotted component p of L is pierced
by k branches of L. Provide L with an arbitrary orientation and provide L
with the induced orientation in L\p, while p is oriented as in Fig. 20. Present
L as the closure of I'-I; where T, is the ribbon (k, k)-tangle presented in Fig. 20
and I is a certain ribbon (k, k)-tangle. Present L as the closure of I'o I, where
I; is the ribbon (k, k)-tangle drawn in Fig. 20 and consisting of k ribbons.
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Fig. 21

Fix a colouring A of L. For iel denote by A; the colouring of L which
coincides with A on L\p and associates i with p. We shall prove that

(7.2.1) AL ={L};.

iel

This will imply that {L}={L}, and since o_(L)=0_(L) we will get F(M; L)
=F(M; L).

Denote by A; and A the colourings of the tangles I'-I] and I'-I, induced
respectively by 4; and 4. To prove (7.2.1) it suffices to show that

(7.2.2) Y d;tr, (F(To I, A))=tr, (F(T=T;, A)).

iel

Note that in case k=1 the latter equality directly follows from Lemma 7.1,
the equality F(I'-I")=F(I')o F(I"") and additivity of tr,. The following argument
works for any k= 1.

Let i,, ..., i, be the A-colours of the bottom border ribbons of I (and I3).
Let g4, ..., &= + 1 be the directions of these ribbons (as usual, + 1 means down
and — 1 means up). Let x and y be an arbitrary pair of A-linear homomorphisms

Ve VY. @V
where jel and, as usual, V*'=V, V™=V V. We first prove the following opera-
tor equality:

(7.2.3) Y di(yoF(I'o I}, A)ox)=yoF(I'I;, A)ox.

iel

Clearly, yoF(I'°I;, A)ox=F([} ) and yoF(I'>I}, A)ox=F([}) where I} and T}
are (1, 1)-tangles pictured in Fig. 21 and coloured respectively via 4; and 4.
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These tangles are isotopic respectively to tangle fl',,- and I} pictured in Fig. 22.
The equality

zdiF(fl’,i)=F(f2')

iel

directly follows from (7.1.1) and functoriality of F. This implies (7.2.3).
Put

V=V @Ve®...Q Vi

In view of (3.1.3) and existence of A-linear isomorphisms {V; — V,.} we have
an A-splitting
V=2,P(V;® 2))

Jjel

with 6=(i&, ..., i) where i*!=i and i~ !=i*. We need some generalities on

the computation of tr, for an A-linear homomorphism ¢: V— V. Clearly

tr,@=tr(re@og)+ . tr,(rjcpoq;

iel

where g, g; are the inclusions Z,> ¥, V;@ Qj< V and r, r; are the projections
V=2, V- V;®. Axiom (3.1.4) implies that tr,(ro¢-q)=0. Schur’s lemma
shows that

ricgeq;: Vi@ Q- V,®@ Q).

equals id ® ¢; where ¢, is a certain k-linear endomorphism of €. Therefore

tr, (rjo@og)=dim, (V) Tr (¢))
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where Tr is the ordinary trace. Fix a basis {el},, in Qj. With respect to this
basis ¢, is presented by a matrix (¢]") over k and Tr ;=) 7™ We have

m

V,-®Q"=EB(V}® Ken),

so that each basis vector e}, gives rise to an embedding, say, x},: V; = V;® 2}
and to a projection, say yi,: V; ® Q- V;. The composition y{,,or iopoqioxn: V;
— V is the multiplication by <p"' " Therefore

dim, (V) Tr (@)=} try (norjo@og;oxh).

Finally, we get
trg@=73 Y trg(Yhor)o@o(g;oxh)).
jel m
This formula applied to ¢=F(I'-I}, A;}) and ¢=F(I'-I;, A) and the formula
(7.2.3) imply (7.2.2). (Actually we use not the operator equality (7.2.3) but rather
the equality of corresponding quantum traces).

7.3. Proof of Theorem 3.3.3

Each coloured ribbon (0, 0)-graph T lying in the exterior of a framed link L< §3
survives the surgery of S* along L and determines thereby a ribbon graph
T, in the 3-manifold M;=0D, obtained by the surgery. This construction gives
all coloured ribbon graphs in M, considered up to isotopy (cf. Sect. 3.3). Here
are 3 moves on the pair (L, T) which do not change (M,, T;) up to degree
1 homeomorphisms: (i) Kirby f-moves on L such that the band of the move
does not hit T (cf. Sect. 6.3); (ii) special Kirby (+ 1)-moves applied to L far
away from T; (iii) the analogues of f-moves which replace a ribbon of T by
its band sum with a component of L. (The latter operation does not change
(M, T,) since it amounts to an isotopy of T, in M, which slides the ribbon
over a 2-handle of D;). Conversely if the pair (M, T;) is degree 1 homeomorphic
to another such pair (M., T;) then (L, T') may be obtained from (L, T) by
the operations (i-iii). This follows from Kirby’s argument given in [K, §2].
Indeed the graph may be always isotoped far apart from the band connecting
2 components of L. So the graph does not produce any obstruction to make
the handle sliding and to deform thereby the Morse functions as in [K, end
of §2].

The same argument as in [FR] shows that the system of moves (i-iii) is
equivalent to Kirby (& 1)-moves in which the strings piercing the disc are permit-
ted to be not only the (segments of) components of L but also ribbons of
T. These latter moves are purely local and so all the arguments of §§ 5-7 apply.
This finishes the proof of the theorem.

8. Modular Hopf algebra []
8.1. Hopf algebra U,

For a non-zero qeC one defines the Hopf algebra U,(sl;) which is a g-deforma-
tion of the universal enveloping algebra of the Lie algebra sl,(C) (see [KR],
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[Dr], [Ji], [FRT], [KiR]). We will consider a quotient Hopf algebra U, defined

in the case when q is a root of unity. Specifically, let t =exp (n ]/ — 1m/2r) where
m, r are mutually prime integers with odd m and m>1, r>2, g=1t* We define
U, to be the associative algebra over the cyclotomic field Q(t) with 4 generators
K, K™, X, Y subject to the following relations:

(8.1.1) XY- YX—%,
(8.1.2) XK=t"2KX, YK=t’KY, KK '=K 'K=1
(8.1.3) K*=1, X'=Y=0.

The relations (8.1.1, 8.1.2) define the algebra U,(sl,) (see, for instance, [KiR]
where X and Y are denoted respectively by X, and X _ and t*=¢q). Thus U,
is a quotient of U,(sl,). It is easy to see that U is finite dimensional over Q(t).
Note, however, that U, is not semisimple.

The known structure of Hopf algebra in U,(sl,) induces a structure of Hopf
algebra in U,. The action of comultiplication 4, counit ¢ and the antipode y
is given on the generators by the following formulas:

(8.1.4) AX)=X®K+K '®X,
AV)=YRK+K '®Y,
AK)=K®K,

yK)=K™', y(X)=-1*X, y(Y)=—t"?Y,
e(K)=1, &X)=¢(Y)=0.

The known structure of (topological) ribbon Hopf algebra in U,(s!,) induces
a structure of ribbon Hopf algebra in U,. In particular the universal R-matrix
ReU,® U, is given by the following formulas. For p=0, 1, ..., 4r—1 put

4r—1 K_tl 1 4r—1

hy=11 =7, 11 (K-1)
1p e

Put

4r—1r—-1 (1 q 1)

R=Y Y - ”——~—'—~h,,(KX)"®K”(K‘1Y)",

p=0 n=0 [ ]

where g=t* and
[n]_tz"—t‘z"_sin(nmn/r)

t2—t~2  sin(am/r)

and [n]!=[n][n—1]...[2][1].
The element ue U, associated with the R-matrix as in Sect. 2.1 is easily com-
puted:

4r—-1r—-1 (1 q 1 n s
u=Y Y -t (= KY) b, (KX) £~
p=0 n=0 [ ]
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(This follows from the definition of u and the equalities
h,K=Kh,=t"h,
so that
P(KP) h,=K Ph,=t"""h,.
The formulas (8.1.4) imply that for any aeUj,
2 (@)=K?aK™2.

According to the results quoted in Sect. 2.1, y*(a)=uau"'. Therefore, v=uK 2
lies in the centre of U,. Moreover, it is easy to see that

ew=1 and A@®)=(R;;R;)™'(v®v).
Lemma.
(8.1.5) y(v)=v.

For generic q it was proved in [KiR, Dr1]. Because for generic ¢ this formula
is equivalent to some algebraic identity we have the same identity in the case
when ¢"=1.

Lemma 8.1.5 implies that

2 =vy(0)=uK 2K 2K?y(u)=uy(u).
Thus the triple (U,, R, v) is a ribbon Hopf algebra.

8.2. Irreducible modules over U,

For a complex number a€{1, —1,]/—1, —|/—1} and for integer i€{0, 1, ..., r
—2} we define a (i+ 1)-dimensional U-module V'(x) as follows. This module
has a basis € (x), €} (@), ..., ei(x) and the action p=p; of the generators of U,
is given by the following formulas:

p(K) en(@)=at'"2"e,(x)
p(X)en()=0[n][i+1—n] e, (a),
p(Y) (@ =61 (®),

where n=0, 1, ...,iand ¢, (¢)=¢el, ; (0)=0.

The U-modules V() are irreducible. Moreover, these modules remain irre-
ducible under the ground field extension of Q(t) to its algebraic closure, the
field of complex numbers C.

The quantum dimension of all these modules is non-zero:

(2042 __4=2i=2

dim, Vi(0)="Tr; (v~ ") =Tr, (K2 =a? =a2[i+1],

t2—t2

where for aeU, we denote by Tr;(a) the (ordinary) trace of the operator x>
p(a) x: Vi(x) > V(). In particular, dim, V(1)=[i+1].
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Recall that the dual to V'(a) module (V'(x))¥ is defined to be the vector
space of the Q(t)-valued linear functionals on V*(a) with the action p“ of U
given by the formula '

pY¥(@x, y>=Lx, p(r(a) y>
where aeU,, xe(Vi(®)Y and yeVi(x). Let {fi(x), n=0,1,...,i} be the basis
in Vi(a) dual to {e}()},:
S (@), €i(@)) =0 -
It is easy to compute that
pY (K) fil@=att™ 72" (),
pY (X) fi@)=—a? > [n+1]1[i—n] fi+:1 (@),
pY (Y) fi( @)= —t"2fi_ 1 ().
It is straightforward to verify that the linear mapping
wi(@): (V@)Y = Vi@™)
defined by the rule
W) (i) =(~ 17026 2nel_ (a7 Y)

is an U-isomorphism.

8.3. Modular Hopf algebra 1

Put I={0, 1, ..., r—2} and provide I with the identity involution *=id. For
iel put V'=V*(1). We have the U-isomorphisms

(8.3.1) {wi(1): V¥ = Vi=Va}

constructed in Sect. 8.2.

We claim that the triple U,, R, v constructed in Sect. 8.1 together with the
modules {V;};.; and isomorphisms (8.3.1) make a modular Hopf algebra.

The verification of the axioms (3.1.1), (3.1.2) is straightforward. The axioms
(3.1.3) and (3.1.4) will be discussed in the next section. Here we check (3.1.5)
and (3.1.6). We first state the result of computations: for any i, jel

_ sin (n(i+ 1)+ 1) m/r)

®3.2) Si sin (mm/r)

sJ

This matrix is invertible over Q(f) which is the content of the axiom (3.1.5).
Indeed, we have the orthogonality relation

(833) v sin(n(i+ rl)k'") sin ("U+ 1) k”‘)=£ 5,

i j*
K1 r 2

If m=1 this is well known; for general odd m with (m, r)=1 this equality follows
from the fact that the residues { +km(mod 2r)|k=1, ...,r—1} fill in the whole
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Fig. 23

set 1,2,...,r—1,r+2,...,2r—1. (Note that for even m the matrix (S; ;) is not
invertible Since Si,j= _ Si,r—2 —j)’
Further computations show that for ie we have

(8.3.9) D=t ~HG+2)
2 o
(8.3.5) d; =1/; exp (|/— 1d) sin (x(i+ 1) m/r),
where
(8.3.6) d=p_Tm, T

the number ¢ being determined from the following Gauss sum

2r—-1

(8.3.7) V2rexp()/—19)= Y exp()/—1nk*m/2r)
k

=0

We also have (3.1.6):

(8.3.8) C=exp(2})/—1d)+0.

In particular if m=1 then ¢ =n/4 and

C=exp(_£hc.3_<2_—_r>),

2 r

This value of C shows the accordance of our approach with that of Witten

[Wi] who considered the case m=1, g=exp (2n]/ —1/r) from a physical point
of view.

Proof of (8.3.2). We will use the following formulas which directly follow from
the definition of h,:
p(hp) e:x=6p.i—2ne{|
(here €}, =e(1)).
Denote by I' the coloured ribbon (1, 1)-tangle drawn in Fig. 23. The operator
F(I): V;>V, is Uclinear; therefore F(I') is the multiplication by certain beK.
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The Hopf link H; ; (see Fig. 13) is clearly isotopic to the closure of I'. In view
of Lemma 2.6 and the definition of §; ; (3.1.5) we have

S;,;j=F(H; )=bdim,(V)=b[i+1]
Thus, to prove (8.3.2) it suffices to show that

_sin(zm(i+1)(j+1)/r)
T sin(zm(i+1)/r)

(8.3.9)
If the R-matrix of U, is presented as ) o, ® B, then
k
R, R12=Zﬁk o ® oy By
k,1

The same argument as in the proof of Lemma 2.6 shows that

. bej= Zpi(ﬂk o) Tr; (K? oy ) e:iu
k1

Using the definition of R we get

. 4rzl rzl (= 1)+oo—1) (1__ —1)n+v
bel = tnn— v(v—
" p,s=0 n,v=0 [n]'[v]'

KP(K™ 1Y) hy(KX)" x Tr; (K2 h,(KX) K*(K ™' Y)") €.

Since the operator ¥;— V; staying in the R.H.S. is the multiplication by a scalar,
we may compute this operator applying it to e},. Clearly, h,(KX) e, =0 unless
t=0 and s=i. Thus

4rlr1(1q1n

beh=Y

p=0 n=0 [n]'

KP(K~' YY" Tr; (K2 h,(KX)' K') ¢}

tn(n- 1)

The latter trace equals O unless n=0. Thus,
4r—1

be,= Y KPe, Trj(h,K'*?).

p=0

For pe{j,j—2, ..., —j} the trace Tr;(h,K'*?) equals t*“*?); for other p this
trace equals 0. Therefore
t2(i+1)(j+1)__t—2(i+1)(i+1)
b= y 2mi+1)

m=j,j-2,...,—j

t2(i+1)__t—2(i+ 1)

This implies (8.3.9).
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Proof of (8.3.4). Applying p;(u) to e} we easily get

4r—1
pi(u) ef)= Z pi(K_php) ei)‘—‘Pi(K—’hi) e;‘)=t—;2 e{)
p=0
Therefore,
pil0) eh=p,(uK ) eh=t 11D ¢}
This implies (8.3.4).

Proof of (8.3.5). To prove (8.3.5) we need some simple number-theoretic compu-
tations. For integer n put

r—1
_ j2+2nj
S,= Z t j

ji=1

= Z exp (L (2 +2n1))

Clearly
rot —1lam . .
S,= Z exp(l/~—_2-—r—-((2r——])2——2n(2r—-])))
2r—1
= exp(@(lz_zn]))
ji= r+l
Therefore,
2r—1 _
S,+S_,= 3 exp(zglr“—m(juznj))
ji=1

—exp (l/—‘lnm(n +—;—))
= —exp ([/——lnm(n+%))— 1+
+exp(—@t—r2 n2> zil exp (ﬁ_zl;n—mjz)

r =1

(Here we have made substitution j—j—n). From (8.3.7) we get

S,+S_,=—exp (]/—_lnm<n+%))+ 2r exp (]/—_1((p— m;rnz))—l

Finally we get

(Sa+8-)—(Sps2+5-4-2)=2)/2rexp()/~ 1) Si""—nm(:+' :

—)/ —1am@n*+2n+2)
-exp P .
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Now we may compute {d;}. The equations (*) of Sect. 3.1 are equivalent
to the following equations

r—2 . . .
Y it sin(n(H_ l)fl‘i'l)m) d,=t/0+? sin ”U‘:l)m

i=0

for j=0, 1, ..., r—2. Using (8.3.3) we get

dy=t*+D(25)=1) Y 10+ in
ji=0

~sin(n(‘i+1)(k+l)m)=tk(k+2)_l @en!
r 4]/ —1
r—1

) P20+ D) = 2004225k 4 20K)
j=1

ro2 n(j+1)m
r

=(J ST T (=S — S k— 2+ S+ 5_)
_]/_2 3 . mwm(k+1) —
= »rt sm———————r exp()/ —19¢)

This implies (8.3.5).
Proof of (8.3.8). Substituting J =0 in the equality (*) of Sect. 3.1 we get

Y v, dim, (V) d;=1.

iel

In the present setting, dim, (V) is a real number d;=|d;| exp (|/ —1d) and v;" =7
where the overbar denotes the complex conjugation. Therefore

C=) v ' dim, (W) d,
=3 v;dim, (V) d; x exp 2}/ — 1d)

=exp(2 [/_—‘ld).

8.4. Modular Hopf algebra 2

Now, we are going to prove the property (3.1.4) of representations V;. To do
this we should consider in more details indecomposable representations of the
algebra U, (see [Lu]).

Let U* and U~ be the subalgebras of U, generated by K, X and K, Y
respectively. The simplest nontrivial extensions of the irreducible representation
Vi(a) are of the Verma modules W/(a) and W/(a) and W/(a) which are free
over U~ and U* respectively. They are labeled by integers j=0,1,...,r—1
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L] L]
L] L]
L] L]
L] L]

[ ] L]
Wila) Wil
j:3‘ r:6 j=1 . r:6

Fig. 24

and by aeC such that a*=1. In the weight basis e/(x)e W/(«) and &}(x)e W (x)
the action of the generators has the following form:

Kela=at'"*"e)(a), Kéj(o)=at™*2"g)(),
Yel()=o?[n][j+1-n] e}, (@), X&(@)=2,.,(®),
Xel(W)=el (), Yél(@=a?[n][j+1-n]&_, ().

Here n=0, 1, ..., r—1. It is obvious that
WY o)~ W (a).

Studying the action of X, ¥, K on the vectors e}, ¢} one easily shows that
W™~ 1(a) may be imbedded in another U-module W only as a split summand
of W. Also, if W"™!(x) is a quotient of W then it is a split summand of W.
This gives the following lemma.

8.4.1 Lemma. The module W™~ !(«) has no extensions.

It is convenient to use a graphical representation for the structure of
U-modules. Let us represent vectors from the module by verteces ordered verti-
cally according to the values of the weights. Arrows pointing down show the
action of Y. Arrows pointing up show the action of X. The absence of arrows
coming out of a vertex means that the corresponding vector is annihilated by
one of the generators X or Y. Examples of such representations are given in
Fig. 24.
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f2 o
X)), j=3, r=6
Fig. 25

The following sequences are exact:

0V 27i(t™") » Wi() > Vi() >0
0 Vi(@)-» Wi@) - V"2t -0

Dual Verma modules have the same structure and the following isomorphisms
hold: ‘

(W)Y =W (@1
(Wi ()Y W2 i@ 1t77).

The Verma modules W(a) for j+r—1 have important extensions X/(x) of
dimension 2r. The structure of these representations is given on Fig. 25.
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Let ei(x), n=0, ...,j and ai(a), bi(x), n=0,...,r—2—j, fi(®), n=0, ...,j be
the elements of the weight basis in X/ («) (see Fig. 25). The action of the generators
K, X, and Y has the following form in the basis:

Kei(=at!"2"ei(),
Xei@=o?[n][j+1—nlei_i(@),; n
Yej()=ej .1 (®)
Kai(@)=at =727 2" ol (x)
Xal)=a? ' [nl [r—j—1—nla @) | n=0,..,r—2—j
Yai(0)=a}, (@)
Kbi()=at™I72"" 2 bi(a)
Xbj(@)=a? > [n][r—j—1—nlbj_;@)+a}_ (@) | n=0,..,r—j-2
Ybj () =bj 4, (@)
Kfi@)=at™ >t >"f}(«)
Xfj (@)= (1] [+ 1=n] fi- @)+ 300l 5,0 n=0,....]
Yfi(0)=fis1(0).

0,...,j

Here ], ; () =ab(@), . ; () =¢}(@), b ;@ =f§0).

Let us denote by V;, V,, V5 and V, the subspaces in X’ generated by vectors
{en}, {an}, {bn} and {f,} respectively. Also denote by W,,, Wy,, W,,, and W,
the subspaces generated by double sets {e,, a,}, {b,, fn}> {au, [} and {e,, f,,}
respectively. The modules X7(x) have the following submodules:

Vo=V i), WisWiat), WyuxWiat™)
and the following structure of factormodules:

(8.4.1) 0-W,, -Xi@ ->W;,-0
0-W,, ->X'(o) ->W;3-0
0>V, ®V,—> X (a)/)V,»V; —0
where
Waa W 27(@), W,,~W' 27 i(at")

VixVit), VoV i~2(@), V,~Vit™)

The next lemma is analogous to Lemma 8.4.1.
Lemma 8.4.2. The Modules X(x) have no extensions.

8.4.3. Theorem. Let j,,j,<r—2, then
1. Ifj1 +j2.§r—2:

Vit(o) ® Viz(ay) = (“B Vi(ay ay),
lit=J2l£isii+iz
j=lj1—j2lmod2
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2. Ifj, +j,>r—2:
Vit(ay) @ V72 (oy) =( @ Vi(ay oz))

lir—j2l sjs2r—4—ji—ja
Jj=1j1—Jj2l mod 2

R( D X(a)

0sjsjitijz2-r
j=ji1+j2mod2

@ b, if j,+j,=r (mod 2)
V'Y, ay), if j,+j,=r—1(mod?2)

Proof. If j, +j, <r—1 the decomposition 1 follows from the decomposition for
generic g [Ji, KiR]. Suppose j, +j, =r. Solving explicitly the equations

A4X-x=0
where
X= Z xnl ny e{;l(a)®e{;22(oc2)

nyn2

we find the highest weight vectors in V¥ (a,) ® V2(a,) (for generic q see [Ji]).
There are two types of h.w.v. The h.w.v. from the first one are parameterized
by integers j: |j; —j,|<j<r—1, j=|j; —j.| mod 2 and have the form

X/ = ) C;, i, el () ® ez ()
ny+n2=%01—j2-Jj)
where
nyi(j—2) [%(12 —jl +j)+n1]! [jl '—nl]!
Ui +iz—jz—j)—n ] [m ]!

Citizi=const. (o; o)™ t

This vector has weight a, o t/:
AKX = oy t/ X,

The h.w.v. of the second type are parametrized by integers j:

0LjSji+ja—r  j=j1+j; (mod2)
AK)EJ=((XI a2 tr)'tjij
%= ) Cirizi el () ®ed2(x2)
nitn2=%(i1+j2—j-r)
where
Chml=cui

So, for each weight a,a,t/, |j;—j,|<j<j,+j, there is a unique h.w.v. in
Vit(a,) ® V72(a,). Acting by the operator 4Y on the vectors x/ and %/, for each
iy —j.|Sjsr—1, j=|j,—j,/ mod2, we obtain an irreducible submodule
V(g az) (We put V'™l ap)= W (a, ay)). For each 05j<j,+j,—r, j=J;
+j, (mod 2) we obtain a Verma submodule W’(«, a, t"). The total number of
highest weight vectors is equal to min(j,+1, j,+1) and is the same as the
number of h.w.v. in the decomposition of the tensor product of the two corre-
sponding irreducible representations of SU (2).
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The analysis of the lowest weight vectors )’ gives us the irreducible submo-
dules V¥(a; «,) mentioned above and the submodules which are isomorphic
to the Verma modules W/(a; a, t ") with 0<j<j, +j, —1, j=j; +j, (mod 2). The
total number of l.w.v. is the same as the total number of h.w.v., and for each
weight o, a, t 74, |j; —j,| Sj<j; +Ja, j=Jj1 +J, (mod 2) there is a unique Lw.v. in
Vit(o,) ® v72(az)-

From the uniqueness of h.w.v. with weight a, o, t"~~2 follows identity

(YY1 R=C-x7I7% 0S)j<ji+j,—r

for some nonzero constant C. )
From the uniqueness of Lw.v. with weight a; o, t™"*/*2 follows a similar
identity for Lw.v’s:

(AXy* 1 P=C.y i

_ Therefore the subrepresentations V"™~ 2(x, ay), W(ay a, '), Wi(a; a, 1), in
V7 (ay) ® Vj,(,) are the subrepresentations of indecomposable reducible subre-
presentations M7(«, a,) formed by vectors

{(AY) X7l o={(4X)"y'}i-0o
for
li1—J2|SjS2r—4—j1—j;,  j=lj1—J2| (mod2)
{AY)y#}ize,  {(4X) Y=o
for
0<j<ji+j.—r,  j=ji+j,(mod2).
This representation M/(x) has the following structure:

M (@)/Wi(at)y~ V"7 2(a),
MY (o)) Wit )= V"7 2(a),
M)V 2 (o)~ Vit @ Vi(at™™)

Let us define vectors

xp= > Clii el (o)) ® ez (a)
nitn2=%(r1+j2—j)+n
where
+01+i2—0)
Chith=a-ai oyt Y, (—1peresity
p=0

_ (302 —ji +)—p1' Ui —p]!
[n—pl![n—n, +p1' [3G1 +j2—)— 1! [P]!

for generic ¢. Let us fix the constant a by the condition

xi=(AY) x!
for
lj1—j2l SjSr—1(=|j; —j,| mod 2), t* =1.
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Then, consider vectors

jtr

77T ()= — (x,+1—c'xr_j_2)

1
[Wil3]
for generic t. Acting by the element 4X on these vectors we have:

(8.4.2) AXZ i3 (f) =Xt
In the limit t*"— 1, we have x| - (4Y)y* ! ¥/ =cx""/~2 From (8.4.2) and from
the structure of Lw.v. it follows that z"~/~2(¢) has a finite limit when t*"— 1.

Vectors (AYY' 2"~/ ?(t)ljar=; for n=0,...,j—r—2 generate a linear space
isomorphic to V"7~ ?(a). By direct computation one can prove that

@Yy I I () ey =C-(AXY

for some nonzero C. So, we obtain an extension of the representation MJ(a, a,)
which is isomorphic to X7(a; a5):

0— M (o ay > X (et 05) > V"I 2 (o a,) > 0

The subrepresentations X/(a, a,) for different values of j are nonisomorphic.
They are nonisomorphic to irreducible subrepresentations W* ™! (a; a,), V(a, )
either. Therefore we have a decomposition 2. Q.E.D.

8.4.4. Lemma. Tensor products of Verma modules and irreducible representations
of U, have the following structure:
L If ji+j2Sr=2,j1S)2

Viv(ay) @ Wi ()= @ Wi(ay ay),

J2—i1Sjisii+iz2
2. If ji+j25r—2,j1>),

Vi) @ Wh(a)=( @D Wia)®( @O X(yat™)

J1—J22jsiiti2 0sjsj1—j2—-2
® ¢,j1—j.=0 (mod 2)
‘V"l(“x ayt™", ji—j=1 (mod 2)

3. If ji+jasr—1,j1S),
Vj'(“l)@ sz(a2)=( 6“) Wj(“x 22)) ® ( 6‘) Xj(“l o))
j2—i12jS2r—4-j1—j2 0sj<sji+ja—r

®{¢Jl +j=r (mod 2)
V' oy ay), ji +jp,=r—1 (mod 2)
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4. If ji+j,Sr—1,j;1>),

Vi () ® sz(a2)=( C‘D Wj(“l ) ® ( @ Xj(al 02))
J1=i2Sjis2r—4-ji1—j2 O0sjsji+j2—r
¢, if j1—j,=0(mod 2):
r is even.
Vi 0) @V " Hoyap ™), if ji—jz=1(mod 1):
j _ r is even.
BEOX BRI 3y 2,070, i jy—i2=0 (mod 2):
r is odd.
VT o o), if j1—j2=1mod?2):
r is odd.

Here W/ ()= ¢, Xi(a)=¢ if j<O.
Proof. Let us prove 2. Recall that the sequence

0— V"= i=2(qt™") - Wi(a) » Vi(e) - 0

is exact. Consider the decompositions of the tensor products of Vii(a,) with
sub and factor modules of W’2(«,). For the case 2 we have:

Wi () ® ij(“2)= @ Vj(al o).

J1=Jj25jsirti2

le(a1)® V'_2_j2(a2t_r)=( @ V"Z—f(alazt—r))
Jimi2sjshiti2
& D Xt
0Sjsji—ja—2
® ¢,j1—j,=0(mod 2)
Vi oy apt™"), ji—j2 =1 (mod 2).

Now from the fact that X’(x) and V"~ !(a) have no extensions and from the
exactness of the sequence (8.4.1) claim 2 follows immediately. For other cases
the proof is similar.

8.4.5. Theorem. The tensor products of irreducible representations V7 with repre-
sentations X’ have the following form:
L If ji+j25r—2,j1S)as

le(al)®Xj2(a2)= @ Xj(otl az)-
J2—i12jsiti2
2. If ji+j,Sr—2,j,>,
Vit () @ X2 (o) = ( @D Xi(oy ap))

J1=J25jgi1t]2

j ¢,j1—j,=0(mod 2)
C*® X/
®(0§j§1€9-j2—2( ®Xm aZ)))®{C2®Vr-1(°‘1“2),j1_]'2=1 (mod 2)
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3. If ji+j2>r—2,j1 S,

Vit (e, ® X72(a)=( @ X (oy 1))

J2—j18jS2r—4—ji1—j2

( P X(yath®@X/(aaxt™)
0<jgir+ia-r

® ®,j1—j2=r (mod 2)
V'™ oy ay 1), j—j,=r—1(mod 2).

4. If ji+j2>r—2,j1 =),

Vit(o,) @ X72(ay) =( @ X (ag o)) @ ( @ (C*® X(a; )

J1=022jS2r—4-j1—j2 0=jsj1—Jj2—2
®( P XEoat)®@X (yat™")
0SjSii+ia—r
¢,j1—j,=0 (mod 2): even r
C?RV Yoy o) @V (a0, YDV ey t77), jy —j, =1 (mod 2): even r
C2® Vr‘l(al 0(2), jl —j2=0 (mOd 2): Odd r
VYo o, Y@V Yo 05 t™"), ji—j,=1 (mod 2): odd r.

®

Proof. To obtain these decompositions it is sufficient to use exact sequences
(8.4.1) and decompositions from the Lemma. As in the proof of the Lemma
the main point is the absence of extensions of the representations X/(x) and
V' Ya).

Now we are going to prove the property (3.1.4) for the algebra U,. As follows
from Theorem 8.4.3

Vi@...@Viv= @ @ *"QVY®Z(j;...jn),

0<jsr-2
where
Z(jy-jn)= @ @i (@)@ W (W)
ad4=1"
& @ Qi iv@® X ().
a‘=1
0=jsr-2

Therefore to prove that the quantum trace of each U-linear operator acting
on Z(j,,...,jn) is equal to zero is sufficient to prove the same property of
U-linear operators as acting on W”~ () and X’(x). Because the representation
W' !(«) is irreducible each U-linear operator § is proportional to the unit
operator f=>b-I (Schur lemma), and we have

-1
az t2r-—2—4n
=0

tr (K2 B)=b try,-1 o (KH)=b

__t—4l'

oz 1
—bolt?2 =

0
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8.4.6. Lemma. Each U-linear operator in W/(a) or W'(a) or W(a) is proportional
to the unit operator.

This lemma also follows from Schur’s lemma. As a consequence, for each
U-linear operator we have

r—1
trwj(a)(Kzﬂ)=ba2 tz'i Z t_4n=0
n=0

.r-l
(K2 ) =ba?t™2 ) t74"=0

n=0

Combining the Lemma and the structure (8.4.1) of X’(x) we obtain the following
block structure for U-linear operators acting on X7():

ﬁ: bIIW"_f‘Z(Il)I *
0 I b2 IWJ'(azt")

And therefore
tryi) (K2 B)=b, tryr-i-2(q (1)+b, i aery (1)=0.
So, we proved the theorem:

8.4.7. Theorem. The quantum trace of each U-linear operator acting in Z(j, ...j,)
is equal to zero.

9. Concluding remarks

1. One may compute the operator F(idg:) to be the identity. So
F(S'xSY)=F(GY)=¥,

and we get essentially the Verlinde representation of Mod, in the (r — 1)-dimen-

sional vector space ¥; [MS].

Conjecture 1. For U, the operator F(idgx) is the unit operator.

2. With each simple Lie algebra % one can associate the Hopf algebra U,(9)
(Dr, J] which is the deformation of the universal enveloping algebra of %.
This algebra has a finite dimensional factor algebra U,[¢] [Lu]. One may show
that U;[¥4] is a modular Hopf algebra. Details will be presented in a separate
publication. In the general case we obtain the following representation of Mod, :

Slu=x1(t2(”+p)) Xu(tzp),

A A+2
n":él,“m t( P).
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Here A, u are truncated dominant highest weights of the algebra %: (1+p, ap,.,,)
<r, (X (x)=try.(x) is a character of the representation V* of the algebra ¢
and u* = —wg u where wy, is the element of the Weyl group with maximal length.

(ST)*=C-a
S2=C.

Here C;,=46, .., a+*0. It is remarkable that this representation for t=exp (%)

was found in [KaW] from the representation theory of Kac-Moody algebras
% w>, where g is the dual Coxeter number.

3. The structure of tensor products of representations V(x), V"~ ! (), X/(x)
reflects the fact that they form a closed quasitensorial category.

4. When this work was finished we were informed that the similar results
about the structure of tensor products in U, had been independently obtained
by A. Wasserman (private communication).

5. Our invariant depends on the orientation of the manifold M. Consider
M as a result of surgery of S along some framed link L. The manifold M
with opposite orientation is homeomorphic to the manifold M’ obtained from
S3 by the surgery along the mirror image L of the link L with opposite framing
numbers for each component. In our example related to U,(sl;) F,(L,w, )=
F,-«(L, —w, /) and we have the following relations between invariants

F,(M)=F,-.(M)

[Ka]. In this case a« =exp (i

where the bar is the complex conjugation. If M has the boundary, then F(M’)
is the conjugated operator to F(M) with respect to standard bilinear form on
r9+. This follows from the fact that F(M, T) is expressed in terms of F(S3, I
where {I'} are certain coloured ribbon graphs in S* dependent on T and M
(see sections 3, 4, 6).
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