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The Yang-Baxter equation and invariants of links

V.G. Turaev

Leningrad Department of Steklov Mathematical Institute (LOMI),
Fontanka 27, Leningrad 191011, USSR

§ 1. Introduction

The Yang-Baxter equation first appeared in the independent papers of C.N.
Yang and R.J. Baxter in the late 1960’s — early 1970’s. This equation and its
solutions play fundamental role in the theory of completely integrable quantum
systems and in the theory of exactly solved models of statistical mechanics
(see [1, 9]). A relationship between the Yang-Baxter equation and the new
polynomial invariants of links was implicit already in the pioneer paper of
Jones [5]. In that paper Jones introduced his famous polynomial of links via
a study of certain finite dimensional von Neumann algebras. A remark of D.
Evans mentioned in [5] points out that these algebras were earlier discovered
by physicists who used them to study the Potts model and the ice-type model
of statistical mechanics.

After appearance of [5] several authors introduced two new isotopy invar-
iants of links P and F which are (up to reparametrization) Laurent polynomials
of 2 variables (see [3, 7]). Both P and F contain the Jones polynomial but
can not be deduced from it. Known constructions of P appeal either to von
Neumann algebras, or to Hecke algebras, or to a geometric iterative procedure
based on a Conway-type relation. The only known construction of F, due to
Kauffman [7], appeal to an analogous geometric procedure.

Recently, Jones [6] has shown that P can be constructed using explicit
Matrix representations of Hecke algebras, introduced in works on the quantum
inverse scattering method and related to the Yang-Baxter equation. It is stressed
in [6] that “a consistent general picture of the polynomlals is starting to emerge,
the relevant mathematical formalism being quantum inverse scattering method
and quantum statistical mechanics”.

The key observation which underlies the present paper is to the effect that
One can directly construct P and F using some solutions of the Yang-Baxter
€quation. This leads to a general scheme which enables one to introduce these
(and other) invariants of links. The resources of this scheme are far from being
exhausted,

Note, however, that this approach does not shed light on the conceptual
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problem of understanding the polynomials from the viewpoint of algebraic topol-
ogy. In particular, it is by no means clear how to extend the definition of
the polynomials P, F given below to links in homology 3-spheres. (It is curious
to note that a related invariant — the multivariable Conway polynomial can
be defined for links in homology spheres, see [10].)

Though I do not consider von Neumann and Hecke algebras in this paper, it would be of
great importance to comprehend the algebraic nature of the invariants.

I am indebted to O.Ja. Viro and W.B.R. Lickorish for helpful remarks. I am especially thankful
to N.Yu. Reshetikhin for valuable discussions.

Organization of the paper. In §2 the Yang-Baxter equation is recalled and the
so-called EYB-operators are introduced. In § 3 with each EYB-operator § I
associate an isotopy invariant of links Tg. In §4 some special EYB-operators
are considered, and the corresponding link invariants are studied. These invar-
iants are shown to be equivalent to the polynomials P, F mentioned above.
In § 5 under some restrictions on the EYB-operator S a state model for the
invariant Ty is presented. In §6 a nonoriented version of this state model is
discussed; this model is used to prove Theorem 4.3.4 formulated in § 4.

Notation and agreements. In the whole paper the symbol K denotes a fixed
commutative ring with 1 and V denotes a fixed finitely generated free K-module
of rank m=1. For a natural n the n-times tensor product VR V®...®V
is denoted by V®" In particular, V®!=V and V®2=V®V. Each basis
Uy, ..., Uy in Vgives rise to a basis in ¥®" which consists of vectors v;, ® ... ® v;,
with i, ..., i,€{l, 2, ..., m}. Having this basis, each (K-linear) endomorphism
f of V®" determines the multiindexed matrix (f72:27), 1=iy, jy, ..., i, jaSM
defined by the equation
f0,©...Quv)= ) flulre,®..Qu,.

1)1, jnSm

The symbol K* will denote the set of invertible elements of K.
By a link we shall mean a tame link in R3.

§ 2. The Yang-Baxter operators

2.1. Let R:V®2 5 V®2 be a (K-linear) isomorphism. For natural n, i with n—1
2i=1 denote by R;(n) the isomorphism

[P V@R IdPri~D: yer,yen
Thus for any vy, ..., v,€V
Ri(n)(vl ® oo ®U,,)=vl ® “ee ®Ul'_1 ®R(v,—, U,-+1)®Ui+2® ces ®l),,.

The isomorphism R: V®2— V'®2 is called a Yang-Baxter operator (or, bricfly:
a YB-operator) if the automorphisms R, =R, (3) and R,=R,(3) of V®? satisfy
the equality
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Ri°R;°R;=R;°R,°R,. 1

This is the Yang-Baxter equality (with zero spectral parameter). For examples
of YB-operators and further information the reader is referred to [2, 4, 8];
see also § 4.

2.2. Recall that for each homomorphism f: V®" - V' ®" one can define its “oper-
ator trace” Sp,(f) which is a homomorphism V®®~1 , y®e=- [fy -y
is a basis in V'then for any iy, ..., i,_,€{1,2,...,m}

Spa(N) 0, ®...®v;,_ )= Y i, ®...®u;, .

1=j1,cjn-1,J5Em

(Spa(f) does not depend on the choice of basis of V). It is clear that Sp(Sp,(f))
=Sp(f)eK where Sp is the ordinary trace of a homomorphism.

2.3 By an enhanced Yang-Baxter operator (briefly, EYB-operator) I will under-
stand a collection {a Yang-Baxter operator R: V®2 - V®2; 3 K-homomorphism
u: V—V; invertible elements «, f of K} which satisfy the following two condi-
tions:

(i) The homomorphism p® p: V®2 -»¥V®2 commutes with R;

(i) Sp2(Reo(u@p)=0pu; Sp2(R™*e(u@p)=0"" ppu.

Note that if u is an isomorphism then Condition (ii) is equivalent to the
following:

Sp,(R*'o(Idy @ u)=0*' B 1dy.

We shall mainly consider the case when yu is an isomorphism presented
by a diagonal matrix with respect to some basis of V. The following theorem
restates Conditions (i), (ii) in this case.

23.1. Theorem. Let R: V®2 5V ®2 pe a YB-operator. Let v,, ..., v, be a basis
of Vand u be an isomorphism V—V which transforms v; into p;v; for i=1, ..., m
with p,, ..., u,eK*. The collection (R, u, xe K*, Be K*) is a EYB-operator if and
only if the following two conditions are satisfied :

(i) For any i, j, k, le{1,2, ..., m}

(s 15— e o) RH =0. @
(iiy Foranyi, ke{1,2,...,m}

Y R¥ju=apol; Y (R™Oejp=a"" B
i=1 j=1

(here &¥ is the Kronecker symbol: &i=1, 6*=0 for k= i).
Proof. Obvious.

24. Remarks. Clearly, 1 ® u commutes with R iff 4® y commutes with R™*.
Therefore, any of the conditions (i), (if implies that for arbitrary i,j, k, I

(i 5 — e )R i =0. A3)
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The condition (i) of Theorem 2.3.1 implies that the product of the square
m x m-matrix [R}/] with the column

131
Hm
is equal to the constant column
af
af
The same is true for the matrix [(R™');/] if we replace « by o~ '. Therefore,
if at least one of these two square matrices is invertible over K then there
exists at most one sequence U, ..., 4, which satisfy (ii)’ for given «, g.
In the general case p,, ..., u,, (if exist) are not uniquely determined by R,

o, B. For example, for any homomorphism u: V- Vthe collection (Idy ez, p, a=1,
B=Sp u) is a EYB-operator.

§ 3. Invariants of braids and links

3.1 Invariants of braids. Every YB-operator R: V®2 -V ®2 gives rise to a finite-
dimensional representation of the Artin n-string braid group

B,={04,...,0,_1:0,0;=0;0; for|i—j|=22;
0;0;410;=0;,10;0;41 for i=1,...,n—1)
(here n=1). Namely, put R;=R;(n): V®" -V ®" and notice that
R;R;=R;R; for |i—j|=2
and (in view of the Yang-Baxter equality)
R,R;,, Ri=R,, R,R;y, fori=1, .. ,n—1.

Therefore, there is a unique homomorphism B, — Aut(V®") which transforms
o; into R, for all i. Denote this homomorphism by bg. We shall also use the
homomorphism w from B, to the additive group of integers which sends
O1y...,0,— i0t0 1.

Every EYB-operator S=(R, u, , f) determines a mapping Tg: ] B,—K

nz1

as follows. For n=>1 denote the homomorphism y@u®...@ u: V®" - yer
by u®". For a braid (e B, but

Ts(&)=a~"® B~"Sp(bg(E)ou®": VO V™),

The most important properties of T are given by the following theorem.
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3.1.2. Theorem. For any £, neB,
Tstn™ ' En=T5( 0,)=T5(l 0, ') = Ts(C).

To prove this theorem we need the following lemma which is a direct conse-
quence of definitions.

3.1.3. Lemma. If f, g, h are endomorphisms respectively of V®®*1 p®r p&2
then

Spa+1(fo(g®1Idy)) =Sp,+1(f)eg;
Spa+1((g®1dy)of)) =goSp,s1(f);
SP,+1(IdP" "V @ h)=1dF" P ® Sp, (h).

3.1.4. Proof of Theorem 3.1.2. It follows from the definition of EYB-operator
that u®" commutes with b(r) for any ne B, where b=bg: B, - Aut(V ®"). Thus

Sp(b(n™" Emon®")=Sp(b(n~")eb(&)ou®"ob(m)=Sp(b(£)ou®").

Also, w(n ™! &n)=w(&). Therefore Ty(n™* &n)=T5(¢).
Let us prove that Tg(¢ g,) = Tg(&). Clearly,

b o,)=(b(§)®Idy)eR,: VEOTDpy@EtD,
Thus,

Sp(b(¢ a,)ou®"™ )
=SpL(b(0) ®1dy)°R,°(IdP" V@ u® p)o(u®" "V @ 1dP?)]
=Sp{Sp,+1 [(B(E) ®1dy)o(IdP" P ® [Ro(u® p)]o(n®"~ " @ 1dP?)]}.

Lemma 3.1.3 implies that the expression in the figured brackets is equal to
b(&)o[1dP*" ™V @ Sp, (Re(u @ w)1o(u®"™ P @1dy).
In view of the definition of EYB-operator, this is equal to « f(b (&) u®"). Hence
Sp(b(¢ 6,)ou®* V)=0aB Sp(b(&)ou®").
_Clearly, w(& 6,) =w(&)+ 1. These equalities imply that T5(¢ o,,) = T5(£). The equal-
ity Tg(¢ o, )= Ty (€) is proved similarly.

3.2. Invariants of links. Recall briefly the well known relationship between braids
and links. Each braid gives rise to an oriented link via closing (see Fig.1).
A theorem of J. Alexander asserts that any oriented link is isotopic to the
closure of some braid. A theorem of A. Markov asserts that the closures of
tWo braids are isotopic (in the category of oriented links) if and only if these
braids are equivalent with respect to the equivalence relation in [ | B, generated

by Markov moves & —» ™! &n, £ & o' where & neB,. "
Theorem 3.2 shows that for any EYB-operator S=(R, p, @, f) the mapping
Is: LI B,— K induces a mapping of the set of oriented isotopy classes of links

into K. This latter mapping is also denoted by Ts.
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N8

Fig. 1

For the trivial knot O we have
T5(0)=p"" Sp(n). @)

It is easy to show (using the evident equality Sp(f® g)=Sp(f) Sp(g)) that
Ty is multiplicative: If a link L is the disjoint union of two links L; and L,
then Ty(L)=Tg(L,)- Ty(L,). In particular, if L is the trivial n-component link
then Ty(L)=[B~" Sp(u)]"

To formulate the next property of Ty we will need the following terminology.
Let T be a mapping of the set of oriented isotopy link types into K. Let ()=

q
Y. k;t' be a Laurent polynomial over K (i.e. f(t)eK[t,t~']). Let us say that
i=p
f(t) annihilates © and write f(t)*7=0 if for any oriented links L,, L, , ..., Ly
which have diagrams coinciding outside some disk and looking as in Fig. 2
q
inside this disk, we have Y k;t(L)=0. In particular, when f(f)=k_t™"'+ko

i=p
+k, t the equation f(t)*t=0 is a Conway-type relation between the invariants

oflinks L_=L_,, Ly, L, =L, (see Fig. 3).
g

\/ q-p half-twists
L L Lq

P pel

Fig. 2

3.2.1. Theorem. Let S=(R, i, o, f) be a EYB-operator. If the automorphism R

q .
of V®?2 satisfies the equation ) k;R'=0 with k,, ..., k,€K then the polynomial
q . i=p
Y k;o' t' annihilates Ts.
i=p
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AKX

Fig. 3

Proof. Let L,, ..., L, be oriented links which have diagrams as above. Then
for some braid # these links are isotopic to the closures of the braids 7,
0,1, ..., 697 Pn. Let n be the number of strings of 5. Then

Ts(Ly)=Ts(0 n)=o"""¥® B="Sp[(R,) cbg(n)o u®"].
Hence,

q q
Y kot Ts(L.-)=a““""l>""Sp[Z kR obR(n)ou®"]=0.
i=p

i=p

32.2. Corollary. For any EYB-operator S in Vthe isotopy invariant Ty is annihilat-
ed by a polynomial of degree <m? (where m=rky V).

Proof. Every endomorphism of ¥®?2 is annihilated by its characteristic polyno-
mial.

33. Remarks. (i) Without loss of generality we can confine ourselves to EYB-
operators (R, y, a, f) with a=f=1. Indeed, if S=(R, y, o, B) is a EYB-operator
then §'=(«" 'R, B~ ', 1, 1) also is a EYB-operator and Ty = Ty.. However, some-
times it may be convenient to have non-trivial «, .

(ii) If S=(R, u, a, B) is a EYB-operator then S, =(—R, —pu, o, f) and S, =(R,
K, —a, — f) are EYB-operators and for any n-component link L

Ts, (L) = Ts, (L) =(—1)" Ts(L).

(i) It is easy to verify that (in the notation used above) f(t)*t=0 implies
tf(t)*t=0 for any integer i. If two polynomials annihilate t then their sum
also annihilates 7. Therefore, the set of polynomials annihilating t is an ideal
of the ring K[t, t~']. Let us call this ideal the annulator of 7. Theorem 3.2.1
shows that for any EYB-operator S =(R, g, «, f) the annulator of Ty is contained
in the annulator of the endomorphism a~! R of V®2, I do not know if this
Inclusion can be proper.

§4. Examples and applications

41. At present there is a general method which in principle enables one to
Construct EYB-operators from representations of simple (complex) Lie algebras
(spe [2, 4]). Each pair (a simple Lie algebra X, an automorphism of the Dynkin
d}agram of X) determines a “universal” YB-operator acting in an infinite dimen-
Slonal vector space; with any representation of X in a vector space W one
associates an induced YB-operator W®2 — W®?2, These induced operators have
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been explicitly described for the fundamental representations of the Lie algebras
of series As, Bi, C!, D!, A2 and D? (see [4]; here the upper index denotes
the order of the automorphism of the Dynkin diagram: 1 corresponds to the
identity and 2 corresponds to the non-trivial involution). The YB-operators
which correspond to series 4!, B!, C!, D! and A? can be enhanced to EYB-
operators, see Sect. 4.2 and 4.3. The case of D? has remained unclear. (In this
case one definitely can not enhance the YB-operator in the diagonal way with
respect to the natural basis).

Up to the end of §4, K is the Laurent polynomial ring Z[q,q " ']; Vis
the free K-module with a fixed basis v, ..., v,. The symbol E;, denotes the
homomorphism V—V which transforms v; in v, and transforms v,, with ri,
into 0. The homomorphism E; @ E;;: V®> >V ®2 clearly transforms v;®v;
into v, ® v, and transforms other basis vectors of type v, ® v, into 0.

4.2. The series A'. The fundamental vector representation of the simple Lie
algebra A} _, gives rise to the following YB-operator V®2 -V ®2 (see [4] and
references therein):

R= _qZEI 1®E1 1+ Z El j®Ej t+(q_l_q) Z E: I®Ejj
i*j i<j
(Here i,j=1,2, ..., m.)) Note that our notation differ from that of [4]; in particu-
lar, our operator R corresponds to (k&)~! R(0) in [4]. The equality (1) for R

can be rather easily checked directly. From [4] one can also extract a formula
for R71:
R~ =_'q_len®En+ZE11®E11+(‘1 q_I)ZEll®E]J
i*j i>j
It is clear that
R—R™'=(q""'—q)1dP>. &)

4.2.1. Theorem. Put y;=q*' ™ ! fori=1, ..., m. Put o= —q™, p=1. Then S=(R,
u=diag(yy, ..., i), &, B) is a EYB-operator such that for any triple of links (L.,
L_, Ly asinFig. 3

q" Ts(L+)—q ™ Ty(L-)=(q—q"*) Tx(Lo) ©)

and T5(0)=(q"—q~™/g—q").

Proof. The matrix of R with respect to the basis {v;®v;li,j=1, ..., m} in ye?
looks as follows:

—q if i=j=k=I

RbI— 1 if i=l*k=j

“lgTt—q if i=k<l=j
0 otherwise

In particular, if R¥!40 then the non-ordered pairs i, j and k, I coincide. The
same property holds for the matrix of R™!. Thus, the condition (i) of Theorem
2.3.1 is satisfied and the condition (ii)’ is equivalent to the equalities
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> Rijw=apf; Y R Hiip=a~'p. (7
ji=1 ji=1

We have

Rilp=—qm+ Y @ '—@u=—qg*""+@ '—9q)

1 j=i+1

. [qli——m+1+q2i—-m+3+“.+qm—1]_____qm=aﬂ‘

M=

i

The second from the formulas (7) is verified analogously. Hence, (R, u, «, B) is
a EYB-operator. Other statements of the theorem follow directly fom the results
of Sect. 3.1 and the formula (5).

4.2.2. For an oriented link L by P, (L) I will denote the invariant T;(L) produced
by Theorem 4.2.1 and the constructions of § 3. Using B, B, ... I will give a
new proof of the following theorem.

4.2.3. Theorem (see [3]). There exists a unique mapping P from the set of isotopy
types of oriented links into the ring Z[x, x™*, y, y~'] such that P(O)=1 and
for any triple (L., L_, L) as above

xP(L)+x"1P(L_)=yP(Ly).

424. Lemma. Let D be a diagram of an oriented n-component link L. Let u
be the number of crossing points of D. If m=4u+2n+ 1 then the Laurent polyno-
mial (g—q~)**" B,(L) can be uniquely expressed as a ( finite) sum

Z ra,b qa+Mb7 (ra.bez)’ (8)

a,beZ

so that r, , =0 for |a|>2u+n. The coefficients {r, ,} do not depend on the choice
ofm=4u+2n+1.

Proof. The inequality 2u+n<m/2 implies that if the desirable decomposition

(8) exists then it is unique. Let us proof existence. It is well known that trading

overcrossings for undercrossings one can transform any link diagram into a

diagram of a trivial link. Therefore, applying the formula (6) in the iterative

fashion we obtain that P,(L)is a finite sum of polynomials of type +¢™*(q—q~ ')’

gn(G,,) where e, feZ; 0 f<u; G, is the trivial d-component link, and d<u+n.
learly,

(@—a~")"*"[g"(a—q~"Y B(G)]=q"(q"—q ™ (g—q Y """

Note that f+u+n—d<f+u+n=Z2u+n. This immediately implies existence of
the decomposition (8).

The last statement of Lemma follows directly from the construction of the
decomposition (8).

425, Proof of Theorem 4.2.3. The proof of uniqueness of P is standard and
therefore I omit it. Let us prove existence. Let D, L, n, u be the same objects
3 in the statement of Lemma 4.2.4. Let m=4u+2n+1 and let {r,,} be the
Coefficients of the sum (8). Put
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NL)=(g—q™ )™ Y ropqt.

a,beZ

It follows from Lemma 4.2.4 that N(L) is a Laurent polynomial of the variables
g, t which does not depend on the choice of m. Since F, is an isotopy invariant,
N(L) is preserved under the Reidemeister moves. (Note that m=4u+2n+9
is suitable both for D and for any diagram obtained from D by a single Reide-
meister move). Thus N (L) is an isotopy invariant of L. If follows from (6) that

tN(Ly)—t" ' N(L-)=(@—q ") N(Lo).
If G is the trivial n-component link then
N@G)=(—t""Y/(q—q ')
Hence for any link L the function N (L) is a Laurent polynomial of t and g—q~".

Substituting t=]/—1x and qg—q~ 1= |/ —1y and multiplying the resulting
polynomial by (g—q~ )/At—t™Y)=y/(x+x ") we get P(L)(x, y).

4.2.6. Remark. For any link L

B (L)=(q"—q ™(q—q ) ' P/ 14"} —1(g—q ).
4.3. Series B!, C', D! and A?. Fix ve{l,—1}. We shall assume that if m is
odd then v=—1.Fori=1,...,mputi'=m+1—iand
i—v2 if 1<Zi<(m+1)2
i={ i if i=(m+1)/2, mbeingodd
i+v/2 if (m+l)2<ism

(1 i 1SiSem+1/2
5(')“{—v if (m+1)2<i<m

According to [4] the fundamental representations of simple Lie algebras of
series B!, C!, D!, A? give rise to the following YB-operator R,:

Rv=q Z Ei,i®Ei,i+ 2 Ei,i®Ei,i+ Z Ei.j®Ej.i

i,j

Pt i=ir i%4,j
+q97' Y E ®E;;+(@—q ') Y E,QF;;
iar i<
+@ '—q) z (i) e(j) q?--jEi,j'®Ei’,j'
i<j

Here for Lie algebras B!, C!, D!, A2 the pair (m, v) is respectively 2n+1
—1),(2n, 1), 2n,—1), (n+1,—1). It is understood that in the case of odd m
the ring K =Z[q,q~ '] is extended to Z[g'/%, ¢~ /*].

A direct, purely computational verification of the equality (1) for R, seems
to be extremely difficult. However, (1) can be verified for R, using ideas suggeste
by a study of link diagrams.
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From [4] one can extract a formula for R} !:

Rl=q! ZE”®E,,+ZE”®E,,+ Y E. ,QEF;;

i,Jj

i*i’ i=i’ i*j,j
+q Z E®E.;+(@ '—q ) E ®E;;
i#i’ >
+—q7 ") Za(l) e(j)q' E, ;®E,; ;.
i>j

43.1. Remarks. (i) The case of even m is somewhat easier since i+i' for all
i in this case.

(i) The formula for i given in [4] contains erroneous signs+, the correct
signs used above were pointed out to me by N. Reshetikhin.

432. Theorem. Put p;=q* ™" fori=1,2, ..., m. Put a=q™"" and f=1. Then
S,=(R,, u=diag(uy, ..., Um), % B) is a EYB-operator.

Proof. The matrices of R, and R; ' have the following property: If (R,)¥ 0
or (R, 1)¥!+0 then ither the non-ordered pairs {i,j}, {k,I} coincide, or j=1i
and l—k’ (or both). If j=i" and =k’ then

2(+i)-2m=-2

M =i Ho=q =l=wp.

Thus, S, satisfies the first condition (i) of Theorem 2.3.1. Let us check (ii).
Put a(i,j)=(R,)?} and b(i,j)=(R; ")i:i where i,j=1, ..., m. We have to prove
that for any i

m

Za(l N =gt )]

j=

Y b(i,j)g? " =g, (10)

j=1

3

Itis easy to check up that for any i, j, k, |

Ry Yel=o(R)E:f

where ¢ is the automorphism of Z[q'/?, q~'/*] sending ¢'/* into q~'2. In

Particular, b(i, j)= ¢ (a(i, ). Thus
> b)g 1= Y <p(a(i',j’)q”""'")=<ﬂ(2 a(i',j)qﬁ“"'_l).
=t J=1 j=1

Therefore, (9) implies (10).
Using the equalities

e()e(@)=—v and i+i=m+1
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it is easy to compute a(i, j):

0 it i>j

q if i=j+i

a(i, j)= 1 if i=j=1
q—q ! if i<j*i

@—q H(A+vg* ™Y if i<j=i

To verify (9) we shall consider 3 cases: i<, i=7, i>7. If i>7, then i>(m+1))2
and

m

Z a(i’j)qzi‘—m—l=q2i—m+v+(q_q—l) Z q2j—-m—l+v=qm+v‘

j=1 j=i+1

If i=4#, then i=(m+1)/2, m is odd, v= —1 and the computation is similar. Let
i<i. Then i<(m+1)/2 and

m m

Y oa, g " t=g*""+(q—q"") Y ¢¥ ™ l4v(g—qY). (1))

j=1 j=i+1

The sequence i
g¥ ™l =i+l i42,...,m
is the geometric progression

2i+1-m 2i+3-m m+v—1

q > 4 50000 q

with one superfluous member ¢q°=1 in case v=—1 or one omitted member
q°=1in case v=1. This excess or omission is exactly compensated by v(g—q )
Therefore the right-hand side of (11) equals

qzi‘—m+(q_q—l)[q27+l—m+q2'{+3—m+ +qm+v—1]=qm+v.
4.3.3. For an oriented link L the invariant Tz(L) with S=S, will be denoted
by @, .(L). It follows from (4) that
Ony(0)=—v+(@"""—q™ " g—q ")

Apriori, if m is odd then Q,, ,(L)eZ[q"? q~'/*]. The next theorem shows
among other things that actually Q,, ,(L)eZ[q,q~']. In the statement of this
theorem |/ —v=1,if v=—1, and |/ —v is the complex unit |/ —1if v=1.

4.3.4. Theorem. Let ve{l, —1}. For any diagram D of an oriented link L the
polynomial

Om D)=(/=vq"*)*®Q,, (L)

does not depend on the choice of orientation of L. (Here w(D) is the writh(’lof
D — see Sect. 5.1). If D,, D_, D, and D, are link diagrams coinciding outside
some disk and looking as in Fig. 4 inside this disk then
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Oms(D )40 (D)=} ~v(@—q" V[ 0ms(Do)+v0,(D)].  (12)

This theorem is proved in § 6 using the results of § 5.

KO

Fig. 4

43.5. Corollary. Let ve{l, —1}. There exists a unique mapping Q, of the set
of isotopy classes of oriented links into the ring Z[x,x™',y,y~ '] such that
0,(0)=1 and

1) for any diagram D of an oriented link L the polynomial §,(D)=x""® Q. (L)
does not depend on the choice of orientation of L;

2)if D., D_, Dy, D, are link diagrams as in the statement of Theorem
4.3.4 then

Qv(D+)+v QV(D—)=y[Qv(D0)+va(Doo)]

This Corollary is deduced from Theorem 4.3.4 exactly in the same fashion
as Theorem 4.2.3 was deduced from Theorem 4.2.1. (In particular, Lemma 4.2.4
remains true if one replaces in its statement B, by Q,,, and all (other) entries
of mby m+v.)

The polynomial Q, was introduced by Kauffman [7]. (It is denoted by F
in [7]). It was pointed out to me by W.B.R. Lickorish that the link invariants
0-=Q_, and Q. =Q, are essentially equivalent: If L is an n-component link
then

Q- (L)%, y)=(—1"1 Q. (L)()/~1x, =)/~ 1)

It is clear that

m+v —m-=v
0= v+ T =L Jo /=y =va—a ). (3
43.6. Remarks. (i) Using Q, or {, one can easily define an isotopy invariant
of non-oriented links. Namely, if D is a diagram of an oriented link L and
if u is the sum of the crossing signs (4 1) over all self-crossing of components
of L then the polynomial x~* @,(D) does not depend on the choice of orientation
of L. This polynomial is easily seen to be preserved under Reidemeister moves.
Hence, it is an isotopy invariant.
(ii) It is easy to deduce from the properties of Q, stated in Corollary 4.3.5
that Q, is annihilated by the polynomial

(2 t=1)(xt2—yt+vx~Ye@Z[xx L, y, y D]
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This fact is equivalent to the identity
(R,+vg™" " D)(R,+q" ' I)(R,—qD)=0
where I=Idygy. It is curious to note that the image of (R,+q ' I)(R,—qI)

is the one-dimensional subspace of V® V generated by p= Y ¢()q' v;®u,.
A direct calculation shows that R,(p)=—vqg ™" p. i=1

(iii) According to [3, 7] the Jones polynomial V; can be computed from
both P(L) and Q,(L). This computation shows that up to a standard multiple
and reparametrization Vis the same link invariant as P, and Q, . . If one intro-
duced Q,, - with m<0 by the formula (13) then one would similarly have that
Vis equivalent to Q_, _. The polynomial Q, _ stays somewhat aside: It can
be completely computed from the linking coefficients of the components of the
link. In particular, if L is a knot then Q, _(L)=2. This follows from the equality
0, (D)= Y " where D is an arbitrary link diagram, Q is the set of orienta-

weR

tions of D, w(w) is the writhe of the oriented link diagram (D, w).

§ 5. State models for the invariants of links

L. Kauffman constructed for the Jones polynomial of links a “state model”
of striking beauty and simplicity (see [7]). The construction is based on ideas
which came from the study of the Potts model in statistical mechanics (see

[1]). Jones [6] constructed a state model for the polynomials P(L)(}/ —14"",

[/:—I(q—q‘ 1), m=2,3, ... For m=2 the Jones model is related to the Kauffman
model via “arrow coverings” (see [1, 6]). In this section under certain conditions
on the EYB-operator S I construct a state model for Ty generalizing the Jones
construction.

Fix a EYB-operator S=(R, y, a, f). We shall assume that the K-module V
is provided with a basis so that u is diagonal regarding this basis, A
=diag(y, --.» U), m=1kg V.

5.1. States of diagrams. Let D be a diagram of an oriented link L. The diagram
D determines a planar graph I}, which is obtained from D by identifying each
overcrossing point with the corresponding undercrossing point. (I, is the projec-
tion of L in R?; see Fig.5). The orientation of L induces orientation of 2{"
edges of I}, so that I}, is an oriented graph. By vertices and edges of D I will
mean respectively vertices and (oriented) edges of IT,. The sets of vertices and
edges of D will be denoted respectively by Vert D and Edg D. The writhe w(D)
of D is defined to be w, (D)—w_ (D) where w, (D) and w_ (D) are respectively
the numbers of positive and negative vertices of D (see Fig. 6).

A state of D is an arbitrary mapping f: Edg D — {1, 2, ..., m}. The set of
all states of D is denoted by St(D). With each state f of D and each verteX
u of D we associate an element =,(f) of K as follows. If a, b, ¢, d are edges
of D incident to u as in Fig. 7 then

S o ..
n,(f)= RQSG  if uis positive
T RVIGIS i uis negative
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CO

Fig. 5

K X

Fig. 6

c d [ d

\ /

(i) . i)

N /

[¢] b Qa b
Fig. 7

(Here the matrix elements of R,R™! are taken with respect to the basis in

V®2 constructed as usual from the fixed basis in V)
Put
o= [ m(f)ekK. (14)
ueVertD

3.2. State models for special diagrams. Let D be the diagram of a link L obtained
by closing a diagram of a certain n-string braid &. Let a,, ..., a, be the (oriented)
edges of D which tie the top and bottom ends of & (see Fig.1). For a state
fof D put

§ =11 #raoeX.
D i=1
5.2.1. Theorem.
Ts(L)=Ts(O)=a P p™" Y ()| f (15)
SfeSt(D) D

Proof. Let vy, ..., Uy, be the fixed basis of V. Consider the matrix of bg(&)ou®":
VerLyen with respect to the basis {v; ® ... ®v; |[1Ziy, ..., i,,<m}. It is easy
to see that the diagonal element of this matrix corresponding to the basis vector
' ®...®u; is equal to
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Z O(f) i, iy - s,

SfeSt(D)

f(al)=i1’ "'sf(an)——_in.
This implies (15).

5.3. Further definitions. In order to generalize (15) to the case of an arbitrary

oriented diagram D we need to generalize [ f and the number of strings n.
D

The generalization of n is the number rot DeZ defined as (27) 'y where
is the total rotation angle of the tangent vector of D. (The direction of the
clockwise rotation is taken to be positive.) Alternatively, one can define rot
D using the “Gauss mapping” associated with D. Namely, let us flatten I,
in a small neighbourhood U of its vertices so that two branches incident to
any vertex were tangent to each other in this vertex (see Fig. 8). Denote by
I°=Iy the oriented graph in R? obtained by this flattening. Let A: I —§!
be the Gauss mapping which associates with a point xeI the unit positive
tangent vector of I’ in x. Then rotD=deg 4. (The unit circle S! is provided
with the clockwise orientation.) Note that there is a natural homeomorphism
I, - I’ which is identity on I\ U. In what follows we shall identify the sets
of vertices and (oriented) edges of I'® respectively with VertD and EdgD via
this homeomorphism.

Fig. 8

To define | f I will assume that our EYB-operator S=(R, y, o, f) satisfies
D

the following two conditions:
(5.3.1) py, ..., pueK*;

(5.3.2). If RE} 0 or (R™ ")k} 0 then p; ;= .
These conditions are not too restrictive. In particular, if the ring K has
no zero divisors then 5.3.2 holds for an arbitrary EYB-operator (see § 2).
The integral | f will be defined for the so-called contributing states of D.
D
A state f of D is called contributing if 7,(f)=+0 for all ueVertD. The set of
contributing states of D is denoted by CSt(D). '
Let feCSt(D). If ueVertD and if a, b, ¢, d are edges incident to u as in
Fig.7 then n,(f)+0 and in view of (5.3.2) fp@) Ky@)=Hy() Hsa- Therefore ihe
formal sum ) pu,q ais a one-dimensional cycle in I~ I} with coefficients
acEBdgD
in the multiplicative abelian group K*. Let [f] be the class of this cycle 11
H,(I'*; K¥=H,(I'’; Z)®z K*. Then 4,([f])eH,(S*; K*). The chosen orienia-
tion of S!' determines an isomorphism ¥:H,(S!';K*)—K* Put |
1%



The Yang-Baxter equation and invariants of links 543

=¥(4,([f]). It is clear that the integral _[ f is preserved by ambient isotopies
of Din R%

53.3. Remarks. 1. It is convenient to calculate | f as follows. Let peS! be
D

a generic value of the mapping 4: I'° - S*. Then 4~ *(p) is a finite set of non-

vertex points of I'° in which the tangent vector is parallel (and equally directed)

to the unit vector p. For xed~*(p) denote by a(x) the (oriented) edge of I

containing x. Put &(x)=1 if when one goes along a(x) through x the tangent

vector rotates in the clockwise direction and put ¢(x)= —1 in the opposite case.

Then
=11 #@e (16)

D xed~1(p)

2. If D is the closure of a braid diagram then the definitions of | f given
D

in Sections 5.2, 5.3 are equivalent. The easiest way to see this is to apply the
preceding remark to the vector p directed downwards in the plane of Fig. 1.

54. Theorem. Let S=(R, u=diag(y,, ..., tn), % f) be a EYB-operator which sat-
isfies Conditions 5.3.1, 5.3.2 and the following condition:

54.1. For any i,j, k,1e{1,2, ..., m}
Y, (RTYHPIRLY pjpy ' =0f 0. (17)

15x,yEm
Then for any diagram D of an oriented link L
T(Ly=a"*® g2 5 () | f. (18)

feCSt(D) D

Condition 5.4.1 looks rather unpleasant. However, it is necessary for the
right-hand side of (18) to be preserved by the Reidemeister move Q2b (see
Fig.9). Anyway, it is easy to check up that the operator S constructed in Theorem

P 1P (-4

v y_—\/\
|mcw N TN

Fig. 9

23
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4.2.1 satisfies 5.4.1. Both operators S, and S_ constructed in Theorem 4.3.
also satisfy 5.4.1; this is verified in § 6. Thus, Theorem 5.4 gives state models
for link invariants B,, Q,, +, Q,. - withm=2,3, ...

Proof of Theorem 5.4. If D is the closure of a braid diagram then (18) follows
straightforwardly from (15). Therefore, it suffices to check up the invariance
of the right-hand side of (18) under the Reidemeister moves. It suffices to consider
the moves Q1la, Q1b, Q2a, Q22b, Q3 pictured in Fig. 9. Other Reidemeister
moves (obtained from these by a change of orientations of branches) may be
presented as compositions of the listed moves and their inverses (see, for example,
Fig. 10).

Let E be a link diagram obtained from D by an application of Q1a. Clearly,
w(E)=w(D)+1 and rotE=rotD+ 1. Denote by u the additional vertex of E
created by the move. Denote by q, b, ¢ the edges of E incident to u (see Fig. 11).

a Cc

O

b
Fig. 11

For a contributing state f of E denote by M(f) the set of contributing states
of E EdgE — {1, 2, ..., m} which are equal to f on the set Edg E\ {b}. If ge M (/)
then

fe=tem s § 1.

E E

Hence,

AONIIE

J

Y m@ fg=ura | f
E E

RL@.J (19)
geM(f) =1

If f(a)+f(c) then according to Theorem 2.3.1 the sum in the right-hand side
of (19) is equal to zero so that Y 7,(g) | g=0. If f(a)=f(c) then f evidently

geM(f) E
gives rise to a state h,eCSt(D) so that [ hy=pu;@d [ f In view of (19) and
D E

Theorem 2.3.1,
Z H(g)_fg= H nu(hf)'“ﬂ I hf=“ﬂﬂ(hf) _‘. hf-
D D

geM(f) E veVertD
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This implies that
a—w(E)ﬂ—rotE Z H(g) J’gza—w(D)ﬂ—rotD Z H(h) Ih

geCSt(E) E heCSt(D)

The move 215 is considered similarly.

The moves 22 and 23 do not change writhe and rot of link diagrams.

Therefore it is sufficient to verify that these moves do not change the sum
Y I Jf
feCSt(D)

Let E be a link diagram obtained from D by an application of 22a. Denote
the additional vertices and (oriented) edges of E respectively by u, v and a,
b, ¢, d, r, s (see Fig. 12). For a contributing state f of E denote by M(f) the
set of contributing states of E coinciding with f on Edg E\ {r,s}. If ge M({)
then | g= { f; this easily follows from Remark 5.3.3.1 applied to a vector directed

E E

oppositely to the tangent vectors of a, b, c, d. It is clear that

Y m@n@= Y R e RHII@
geM(Sf) 1<x,y<m
_ {0’ if f@+f(c) or fb)+f(d)

1, if fl@=f(c) and f(b)=f(d)

™
=

J

Fig. 12
If f(a)=f(c) and f(b)=f(d) then f gives rise to a state h,eCSt(D) so that
[ hp= | f Thus,
Y H()fg= ) H(h)Ih

geCSt(E) E heCSt(D)

The moves Q2b and Q3 are considered along the same lines using (instead
of the identity RR ™! = 1) respectively formulas (17) and (1).
§6. Proof of Theorem 4.3.4

6.1. Preliminaries. Let S=(R: V®2 > V®2 u: V-V, a, f) be a EYB-operator.
Assume that V has a preferred basis and that u is the diagonal homomorphism
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diag(4?, 13, ..., A2) where 4, ..., 1,€K*. Assume also that the following holds
true:

(6.1.1). A, =47 'foranyi=1, ..., m(where i =m+1—i);

(6.1.2). For any i, j, k,le {1,2,...,m}

Rij=Ri. (20

(6.1.3). If RE} 0, then 4; ;=4 4;.

In this setting we shall modify definitions of § 5 to make them applicable
to non-oriented link diagrams.

Let E be a non-oriented link diagram. The graph I;=R? and the set VertE
are defined as in Sect.5.1. By an oriented edge of E we shall mean a pair
(an edge of E, an orientation of this edge). The set of oriented edges of E
is denoted by Edg E. For an edge acEdgE we denote by a' the same edge
with the opposite orientation. A state of E (with respect to S) is a mapping
f: EdgE—{1,2,...,m} such that f(a')=(f(a)) for all acEdgE. Denote the
set of states of E by St(E).

With each state f of E and each vertex u of E we associate n,(f)eK: If
a, b, ¢, d are oriented edges of E incident to u as in Fig. 7 (i) then =, (f)= R} /8.
Correctness of this definition follows from (20). For a state f of E define II(f)
by the formula (14). A state f of E is called contributing if =,(f)=+0 for all
ueVert E. The set of contributing states of E is denoted by CSt(E).

Let us flatten I in a small neighbourhood of VertE in the way depicted
in Fig.13. It is important to note that this flattening depends not only on
the graph Iy but on the diagram E itself. Note also that this flattening differs
from the one used in § 5.

Denote the planar graph obtained by this flattening by I'* =I". As in
Sect. 5.3 the set of oriented edges of I'" is identified with EdgE. Denote by
A the Gauss mapping I'* — RP! which associates with a point xeI' the line
in R? tangent to I'" in x.

Let f be a contributing state of E. Provide every edge of I'* with an orienta-
tion and consider the sum Z=ZXA,, a where a runs through this family of
oriented edges. Conditions 6.1.1 and 6.1.3 imply that X is a cycle in ' with
coefficients in K* and that its class in H,(I"*; K*) does not depend on the

choice of orientation in the edges of E. Denote by [ f the image of this class

E
under the homomorphism 4,:H,(I'*; K*)— H{(RP'; K*)=K*. Here the
isomorphism H,(RP'; K*)— K* is induced by the orientation of RP! corte-
sponding to the clockwise rotation of a line in R2.

PSA

Fig. 13
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The next formula is quite analogous to (16): If peRP! is a generic value

of 4: '™ - RP! then
fr=11 »%8. (1)
E

xed~1(p)

Here for a non-vertex point x of I'* the symbol a(x) denotes an arbitrarily
oriented edge of I'* containing x. Note that A55AS” does not depend on the
choice of orientation in this edge, since A5 =A7E0 " =[A;a] "2 =245"
where a=a(x).

62. Lemma. Let S=(R,p=diag(4?,...,A2),a,f) be a EYB-operator with
Ay oors Am€K*. Suppose that Conditions 6.1.1, 6.1.2 and 6.1.3 hold true and that
foralli,j, k,1e{1,2, ..., m}

(R™Yel=4 A7 ' RY, (22)

If D is a diagram of an oriented link L and if E is the underlying non-oriented

diagram then
P P T(Ly= Y, H(f) [ f. (23)

SfeCSt(E)

Proof. Put y,=A? for i=1,...,m. It is easy to deduce from 6.1.1, 6.1.3 and
the formula (22) that S satisfies Conditions 5.3.1 and 5.3.2. In view of (22) for
any i, j, k, le {1, 2, .. m} (R™Ypi=A,A; ' REF and Rk =4, A7 Y(R™1)F}?. There-
fore the equality (17) is satisfied:

Z (R l)xJRxll‘l'Jluy
1Z5x,ySm
= 2 R} y(R l)lk 4 p At 5{5;:'/1j'11—1=5{5;;-

1=x,ysm
Now Theorem 5.4 implies that
P P T(L)= Y I1I(f) I f 24

feCSt(D)

We shall prove that the right-hand sides of formulas (23) and (24) are equal.
Rewrite first (20, 22) as follows:

Rit=2, A7 (R Yok =2y Ag (R~ e/ =RiE. 25)

Here the first term is equal to the second and fourth ones because of (20, 22);
the third and fourth terms are equal because of (22).

Since all edges of D are oriented we have an inclusion EdgD < EdgE. If
8St(E) then the restriction of g to EdgD is a state of D denoted by g*. The
Mmapping g+ g*: St(E) — St(D) is bijective.

Ina neighbourhood of a vertex ue Vert E the diagram D has one of 4 possible
Orientations, given in Fig. 14. Let a, b, ¢, d be edges of E incident to u and
oriented as in Fig. 14 (i). Then =,(g)=R:}2% and =,(g*) is equal to one of
the following 4 matrix elements:

5@ ~1ye(@).8) ~1e@s0).  REG).E
REDED:  (RTRENE: RTESE:  REGYEE
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Fig. 14

It follows from (25) and the identity g(e')=g(e) for eeEdgE that these 4 elements
of K are non-zero iff at least one of them is non-zero. Thus, «,(g)+0 iff =, (g*) 0.
Therefore, the mapping g+ g*: St(E) — St(D) transforms the set C St(E) bijective-
ly onto CSt(D). To complete the proof of the lemma we shall show that for
any geCSt(E)
I(g) fg=I(g*) | g*. (26)
E D

Let z,, z, be the coordinates in R2. Applying if necessary an ambient isotopy
we may assume that in a small disc neighbourhood W, of any vertex u of
D the diagram D looks as in Fig. 14, i.e. the overcrossing branch is a segment
of line parallel to the line z, =z,, and the undercrossing branch is a segment
parallel to the line z;= —z,. We shall also assume that D lies in a generic
position with respect to the projection (z,, z,)>z,: R > R. Let X be the (finite)
set of points of D in which the tangent to D line is parallel to the horizontal
line z,=0. Note that X=D\u W,. Let us flatten I}, as in Sect. 5.3. Let I”
be the graph in R? obtained by this flattening (see Fig. 8). In each disc W,
may lie points of I'” in which the tangent line of I'’ is parallel to the line
z,=0. Denote this set of points by Y, and put Y= ¥,. Deforming, if necessary,
I'° assume that u¢ Y, for all vertices u. Let a(x) and &(x) be the same objects
as in Sect. 5.3.3. To prove (26) we shall need the following formula: If fe CSt(D)

then
f f= H A}(&)(x)) 27

D xeXuY

(compare with (16) and (21)). In the proof of (27) (and only here) I will use
the additive notation for the group operation (multiplication) in K*. In particu-
lar, u;=24; for all i. As in Sect. 6.1, the formal sum XA,.e, over ecEdgD
lS a l-cycle in I'® with coefficients in K*. Denote the class of this cycle in

H,(I'’; K¥*) by o. Clearly, 26 =[] where [f] is the homological class of the
sum Z,uf(e) e. Let r: S* - S! be the two-sheeted covering. It is evident that

r acts in H,(S'; K*) as multiplication by 2. If A: '’ - §! is the Gauss mapping
(see Sect. 5.3) then

| f=4,([f1)=24,(0)=p,(4,4(0)=(p°4),(0).
D

The equality | f=(po4), (o) implies (27).
D
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Flatten I in U W, according to the instructions of Sect. 6.1. In each disc

W, lie exactly 4 points of the flattened graph in which its tangent line is parallel
to the line z,=0, see Fig. 13. It is evident that the product of the expressions
3 corresponding to these 4 points is equal to 1. Thus (21) implies that

for ge CSt(E)
5 g=1 %&e.

xeX

A comparison of this formula with (27), where f=g*, shows that to prove
(26) we have to prove the local equality
m(8)=m,(g* [] 4GE" (28)
xeY,,
for every ueVertE.

Let a, b, ¢, d be the edges of E incident to u and oriented as in Fig. 14
(i). Put i=g(a), j=g(b), k=g(c) and I=g(d). Then =,(g)=R¥}. In accordance
with 4 possible orientations of D in W, (see Fig. 14) the right-hand side of (28)
is easily computed to be one of 4 terms of (25). Therefore, (25) implies (28).

6.3. Proof of Theorem 4.3.4. Put ;=¢'~™* V2 for i=1, ..., m. It is easy to verify
that the EYB-operator (R,,u,a,f) constructed in Sect. 4.3 and the sequence
Aty ..., Ay satisfy Conditions 6.1.1, 6.1.2 and 6.1.3. Instead of (22) we have

(Ry Dej=e() e() A A (R, (29)

for any i, j, k, 1e{1,2, ..., m}. I will first consider the case v= —1. In this case
e(i)=1 so that (29) coincides with (22) which enables us to apply Lemma 6.2.

Denote the YB-operator R_, by R and the EYB-operator (R_,, u, a, f)
by S.If D is a diagram of an oriented link L and E is the underlying non-oriented
diagram then Lemma 6.2 and equality =1 imply

Om-1(D)=a"P Tg(L)= ¥, H(g)f g (30)

geCSt(E)

This directly implies the first statement of the theorem.

Let us prove (12) confining ourselves for simplicity to the case of even m
(so that i +i for all i). Denote the sum which stands in the right-hand side
of (30) by Q(E). We have to prove that for any non-oriented link diagrams
E,,E_, E,, E, coinciding outside some disc and looking as in Fig. 4 inside
this disc

Q(E+)—Q(E-)=(a—q" )Q(E))—Q(Ey).

Schematically:

Q(X)=2(X=(g—4"HQROO—Q2X)).

Denote by u the vertex of E,, E_ pictured in Fig. 4. Let a, b, ¢, d be edges
of E,, incident to u and oriented as in Fig. 14 (i). Let ge CSt(E.). Put i=g(a),
j=g(b), k=g(c) and I=g(d). Since RYj=m,(g)#0 there are 6 mutually exclusive
Cases: (I) k=I=j=i and then =n,(g)=gq; (II) k=j, I=i%j,j’ and =,(g)=1; (II)
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k=I=j=i and n,(g)=q " '; AV) k=i<l=j+i and =,(g)=q—q"'; (V) k=i<]
=j=i and =n,(g)=(q—q YA —A?); (VI) i=j'<I=FK, i+k and =n,(g)=(q" ' —q)
A A7 Y. The set CSt(E.) splits in the disjoint union of 6 subsets, say, 4,, ..., 4
singled out respectively by these possibilites for =,(g). This splitting induces
a splitting of Q(E,) in a sum of 6 summands. Schematically:

i i j i i’ i
Q(E+)=Q(i><':)+Q<i ><j)+Q('i Xi,)

JEiLT

i i T k K
+0| X J+e| X |+l XK

i ] i i i i

i<j+i i<i k+i<k'

(It is understood that we sum up over all permitted i, j, k.) Each state ge4,
determines in the evident fashion a (contributing) state g* of E,. This gives
all contributing states of E, whose values on two pictured in Fig. 4 and oriented
upwards edges of E, are equal. Clearly

fg*=[g M(@=mn,(g) (g*)=qIl(g*.

Thus,

i
Q(,'}{,)=QQ(i7(‘i)-
1 14

Q( e ) o)

Q( )—(q g~ 0));

Analogously, using (21),

i<jai i<j#*i
(%,) @—a Qmm Q( )]
l<l
l<l
kK ;
ol XK. =(q“—q)Q(f;)
it ;
ki<k' i<jEi

Here each expression Q(...) denotes the sum of products I1(g) fg over those
contributing stages g of the corresponding non-oriented () link diagram, whose
values on the pictured oriented edges satisfy the pointed out equalities and
inequalities.
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Summing it up, we obtain

J i i
00)=40(1 i)+Q(i'><j)+q"Q(g)
JjEiL
+Ha—a™) QO+ -0 0(=). a1
i<j i<j

An analogous formula holds for Q(3<). Namely, rotate E_ around u to the
angle 90°, apply (31) and then rotate all the diagrams involved in the right-hand
side of (31) to —90°. After some evident renotation we get

i jooi
Q(X)=qQ(>§’)+Q<i><i)+q“ 0711

JELT
+(¢1—¢1—1)Q(X)*'(q'l—Q)Q(i'ﬂ‘j)- (32)

] i>)

j<i

Here I used the obvious equalities

Q@) )=Q (T j)=Q(N1))

i<j i<j i>j.
Itis easy to understand that
Je At Je At
ol X |=o| X |
i 1
jEi, i JFi, i

(Here it is important that for geA,, m,(g)=1). Therefore, subtracting (32) from
(31) we get

Q(\/\)—Q(X)=(q—q“)[Q(i7ti)+Q(in)+Q(i7rj)

| | i.<j i>]
~e(=)-e(3)-(3)
i<j i>j

=(q—q HIe( ) -2
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Consider now the case v=1. We shall slightly modify R, to satisfy (22).
Put R=R, and put

§=qui,i®Ei,i+ Y e()e()E;;QE;;
i ij

i*j,j

—-q! ZEi,i' ®E;+(q—q™ " Y [E,;® Ej,j+q7—7 E, ;®E; ;]

i<j
(Here i, j=1, 2, ..., m). The matrices of R and R are related by the formula
Rel=¢(i)e(k) RE].
This implies that R is invertible and

(R~ YHel=¢(@i) e(k)(R™V)k!,

i,j = i,j

If R¥/+0 then either the ordered pairs ¢(k), £()) and &(i), &(j) are equal or &(i)=
= —¢(j) and (e(k), e(1))=(e(j), &(i). In the first case R&!=R¥! in the second
case R!=—RE! An analogous statement is valid for R™!. Therefore, if z:
V®" 5V®" is a composition of several homomorphisms R;(n), R;(n)” ! and if
Z: V®" 5 V®" is the corresponding composition of R;(n), R;(n)™ !, then the matrix
elements of z, Z are related as follows. Let I=(iy, ..., i,) and J=(j,, ..., J,) be
two sequences of elements of the set {1, 2, ..., m}. If zJ=0, then 7] =0. If zf +0
then the sequences (¢(iy), ..., €(i,)) and (¢(j,), ..., €(j,)) may be obtained from
each other by several, say, p(I, J) transposition (1, —1)«(—1, 1). Then

B =(— """ p].

This easily implies that R is a YB-operator and that the same u, a, f as in
Theorem 4.3.2 (the case v=1) enhance R to a EYB-operator. The identity p(/,
I)=0 implies that (R, u, o, p) and (R, p, o, p) give rise to the same invariant
of braids and links. The formula (29) gives the equalities

(R 1Yt =e(k) 6(K) 4, 47 Ridi= — Ay A RY,.

LT

We see, finally, that the EYB-operator ([/:T R, u, ]/j a, B) and the sequence
Ay ...s A satisfy Conditions 6.1.1, 6.1.2, 6.1.3 and the equality (22). This EYB-
operator gives rise to the same link invariant as (R, g, a, ), namely, to Om.1-
Now the same argument as in the case v=—1 can be applied to this EYB-
operator which proves the theorem for v=1.

6.4. Remark. In Sect. 6.1 and 6.2 one could use instead of the involution i
i'=m+ 1 —i an arbitrary involution of the set {1, 2, ..., m}.
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