위상수학I 강의록 페이지입니다.



ps파일을 보시려면 GhostScript 및 GhostView가, pdf파일을 보시려면 Adobe Acrobat Reader가 필요합니다.

made by 김명일(2001년),고영우,문종면,남기훈 (2005년2학기)

추가및 수정 김선화,이주현 (2009년1학기)



  1. Basic concepts

    1. Metric space [ps] [pdf] [TeX]
    2. Topological space, basis and subbasis [ps] [pdf] [TeX]
    3. Interior and Closure [ps] [pdf] [TeX]
    4. Properties of Continuous Functions [ps] [pdf] [TeX]
    5. Subspace and Product space [ps] [pdf] [TeX]
    6. Homeomorphism and Embedding
      Homeomorphism [pdf] [tex]
      Embedding[ps] [pdf]
    7. Cantor set and Space filling curve [tex] [pdf]    [Cantor set Flash movie]

  2. Basic topological properties
    1. Separation axioms [pdf] [tex]
    2. Compactness[pdf] [tex]
    3. Tychonoff theorem [pdf] [tex]
    4. Connectedness [pdf] [TeX]
    5. Axioms of countability [pdf] [TeX]

  3. Metric space
    1. Compact metric space[pdf] [TeX]
    2. Complete metric space[pdf] [TeX]
    3. Completion of a metric space[pdf] [TeX]

  4. Normal space
    1. Normal space[pdf] [tex]
    2. Urysohn lemma[pdf] [tex]
    3. Uryshon metrization theorem
      Hilbert cube & Hilbert space[pdf] [tex]
      Urysohn embedding & metrization theorem[pdf] [tex]
    4. Tietze extension theorem[pdf] [tex]
    5. AR and ANR[pdf] [tex]

  5. Further topics
    1. Paracompactness[pdf] [tex]
    2. Local compactness [pdf] [tex]
    3. Quotient space[pdf] [tex]
    4. Baire space
      Baire space and category[pdf] [tex]
      Existance of nowhere differentiable functions[pdf] [tex]